# Refining the time span between the early Holocene Askja-S and Hässeldalen tephras through differential dating based on varve counting from Lake Czechowskie (N Poland)





Askja and the Snæfellsjökull volcanoes on Iceland. (B) Aerial image of Lake Czechowskie with



| Lab code/<br>sample name | Sediment record  | Modelled age<br>[cal a BP, 95.4%] | Calibration dataset | Calibration/modelling procedure            | Remarks                       |
|--------------------------|------------------|-----------------------------------|---------------------|--------------------------------------------|-------------------------------|
| Askja-S                  |                  |                                   |                     |                                            |                               |
|                          | dala<br>t        |                                   |                     |                                            |                               |
|                          | sele             | 11 070-10 750                     | IntCal04            | WMD in Bpeat                               | Model A                       |
|                          | Häs              | 11 050-10 570                     | IntCal04            | Sectioned, WMD in Bpeat                    | Model B                       |
| Sop_T5.19                | e<br>Isee        | 10 991-10 702                     | IntCal09            | OxCal v4.1;<br>P_Sequence                  | Lithostratigraphic boundaries |
| Sop_T5.19                | Lak              | 11 005-10 745                     | IntCal13            | OxCal v4.2;                                | Model 1, strati-              |
| Sop_T5.19                | No<br>No         | 10 956-10 726                     | IntCal13            | OxCal v4.2;<br>P_Sequence                  | Model 2, variable sed. rate   |
|                          | Faroe<br>Islands | 10 500-10 350                     | IntCal09            | OxCal v4.1                                 |                               |
| Hässeldalen              |                  |                                   |                     |                                            |                               |
|                          | ala              | 11 565-11 299                     | IntCal04            | WMD in Bpeat                               | Model A                       |
|                          | sseld            | 11 543-11 232                     | IntCal04            | Sectioned,<br>WMD in Bpeat                 | Model B                       |
|                          | Hä               | 11 596-11 164                     | IntCal04            | Chronologial ordering assumed, WMD in Bcal | Model C                       |
|                          | Faroe<br>Islands | 11 360-11 300                     | IntCal09            | OxCal v4.1                                 |                               |



hras through varve counting in the Lake Czechowskie sediment record Poland JOS Online first cord. Poland. JQS. Online first

Björck S, et al. (1996). Science 274(5290): 1155–60; Błaszkiewicz M, (2005). IGiPZ PAN; Błaszkiewicz M, et al. (2015). QSR 109: 13–27; Blockley SPE, et al. (2014). QSR 106: 88–100; Davies SM, et al. (2003). QR 59(3): 345–352; Housley RA, et al. (2013). Quaternary Science Journal 77: 4–18; Kobashi T, et al. (2008). EPSL 268(3-4): 397–407; Lane CS, et al. (2011). QI 246(1-2): 145–156; Lane CS, et al. (2015). QSR 122: 192–206; Lane CS, et al. (2012). JQS 27(2): 141–149; Larsen JJ and Noe-Nygaard N (2014). Boreas 43: 349–361; Lilja C, et al. (2013). Boreas 42(3): 544–554; Lind EM and Wastegård S (2011). QI 246(1-2): 157–167; Magny M, et al. (2007). QSR 26: 1951-1964; Pyne-O'Donnell SDF, et al. (2008). QSR 27(1-2): 72-84; Ranner PH, et al. (2005). JQS 20(3): 201-208; Rasmussen SO, et al. (2014). QSR 106: 14-28; Rasmussen SO, et al. (2007). QSR 26(15-16): 1907–1914; Turney CSM, et al. (1997). JQS 12(6): 525–531; Wohlfarth B, et al. (2006). JQS 21(4): 321–334.

| cal BP<br>10,900 11,10                       | 0 11,300 11,500                                             |  |  |  |  |  |  |
|----------------------------------------------|-------------------------------------------------------------|--|--|--|--|--|--|
| et a., 2006, model (<br>arth et a., 2006, mo | c                                                           |  |  |  |  |  |  |
| ohlfarth et al., 2006, model A               |                                                             |  |  |  |  |  |  |
| Lind and Wastegåre                           | d al., 2011 <sub>⊢●                                  </sub> |  |  |  |  |  |  |
| is study ⊢                                   |                                                             |  |  |  |  |  |  |
| ) — — — н                                    |                                                             |  |  |  |  |  |  |
| - <b>•</b>                                   |                                                             |  |  |  |  |  |  |
| <b>-</b> I                                   |                                                             |  |  |  |  |  |  |
| +                                            |                                                             |  |  |  |  |  |  |
|                                              | ⊢––– Hässeldalen                                            |  |  |  |  |  |  |
| I., 2011                                     | ⊢ – – ●– – –⊢ Askja-S                                       |  |  |  |  |  |  |
| 10,900 11,10<br>cal BP                       | 0 11,300 11,500                                             |  |  |  |  |  |  |

### www.iclea.de HELMHOLTZ ASSOCIATION



Figure 5. Varve thickness, Ti<sub>ct</sub> and Ca<sub>ct</sub> records for JC are plotted as annual data and as 30-year running means (thick lines). JC pollen data for birch (Betula) and juniper (Juniperus) are plotted on 10-yr average increments. The stratigraphic position of the two tephras is indicated with the white dashed line. The grey bar ighlights the approximate position of the PBO. To the right: the PBO as defined in the NGRIP  $\delta^{18}$ O data shown on the GICC05 chronology with the PBO (dark grey bar) and the so-called 11.4- ka event (white dashed lines) (Rasmussen et al., 2007, 2014; Kobashi et al., 2008) and in the GRIP  $\delta^{18}$ O data (dark grey bar) (Björck et al., 1996). The grey dashed line indicates the transition from GS-1 (Greenland Interstadial-1) to the Holocene in NGRIP (Rasmussen et al., 2014).



Figure 6. Paleoclimate records displaying hydrological oscillations (red=di blue=wet) during the Early Holocene (modified from Magny et al., 2007). Blue bar shows the tentative position of the southern- and northernmost extent of we ssociated with the PBO. Varved lake records (white dots) display potential for future transect studies along climatic gradients for detailed paleoclimate investigations



<sup>1</sup> GFZ German Research Centre for Geosciences, Section 5.2 - Climate Dynamics and Landscape Evolution, Telegrafenberg, Potsdam, 14473, Germany <sup>2</sup> Senckenberg Research Institute and Natural History Museum, BiK-F, TSP6 Evolution and Climate, Senckenberganlage 25, 60235, Frankfurt/Main, Germany <sup>3</sup> Department of Environmental Resources and Geohazards, Institute of Geography and Spatial Organization of the Polish Academy of Sciences, Toruń, 87-100, Poland







ed Climate and Landscape



### **Preboreal Oscillation (PBO)**

- indication of dry phase bracketed by the Hässeldalen and Askja-S tephras (Betula decline, lower Ti input) (**Fig. 5**)
- duration (60-170 varve years: 60 v. yrs Betula decline; 170 v. yrs Ti decrease)
- correlation to PBO only tentative due
- (i) weak proxy response in JC (ii) **unclear regional signals** (dry vs. wet phase; terrestrial vs. "ice core" PBO)
- (iii) lacking data whether PBO is **only** a single cold oscillation (?) (Fig. 6)

## Poster @ a glance - 1 min summary



lished ages is needed tephras as tie points for transect studies (e.g. climatic gradients)

### Author affiliations

<sup>4</sup> Institute of Geological Sciences, Polish Academy of Sciences, Research Centre in Warsaw, Twarda 51/55, Warsaw, 00-818, Poland