

Ocean colour algorithm for monitoring coccolithophore blooms: a method based on remote-sensing data

Laurie Perrot(1)(3), Francis Gohin(1), Diana Ruiz-Pino(2), Luis Lampert (1)

(1)Ifremer (DYNECO-PELAGOS) (2)UPMC-LOCEAN (3)CNES

Why do we focus on coccolithophores?

- Produce CaCO3 and CO2 with calcification process
- Produce DMS (dimethyl sulfide)

A sink of CO2 with photosynthesis process

Feedbacks on climate

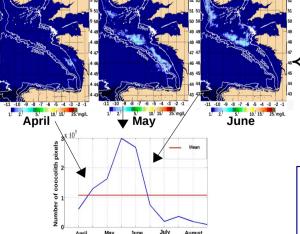
Problematic:

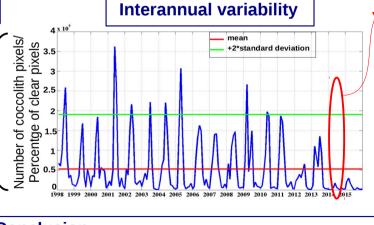
What is the evolution of the budget of calcite produced by coccolithophores? How the environmental factors impact coccolithophore blooms?

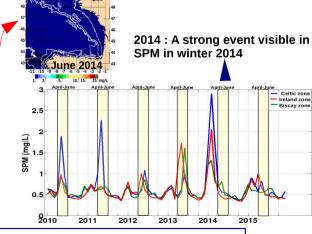
Results for bloom on 25th April 2013 Quantitative estimation of coccolith bloom (25/04/13) Fuzzy-index (25/04/13) Total SPM (25/04/13)- Ifremer algorithm

Method Suspended particulate matter (SPM) **MODIS** picture (25/04/13) (25/04/13) Ifremer algorithm * Coccolithophore → Coccoliths are visible in SPM signal. bloom Method needs to discriminate coccoliths from SPM signal. coccoliths

Fuzzy-index method:


A statistical approach based on comparison between the radiance spectra at each pixel and a caracteristic coccolith radiance spectrum.


Caracteristic coccolith spectrum


wavelength (nm)

2014: the lowest signal of coccolith bloom

Conclusion

- The method allows to discriminate coccolith blooms in North-East Atlantic
- Blooms extend along the shelf-break northward from Bay of Biscay to Ireland, with anomalies in the time-serie of 18 years, as in 2014.