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Introduction

Geophysical surveys, such as seismic tomography (ST), are
preferably used for characterizing reservoirs and CO, plumes,
However, proper petrophysical model is required, which is usually

nonlinear and indirect

vy related to the hydraulic conditions.

Pressure tomography (PT) is a novel approach for tracking an
evolving CO, plume by directly relating the CO, saturation to the
variations in flow properties. By this approach, pressure transients
are utilized for inverting the plume shape and estimating CO;

saturation.

« Compare and combine the inversion results by c
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» Calculate the CO, saturation by the mixed-phase specific
storage in a single-phase proxy

Diffusivity and velocity tomograms

e Aquifer structure prior to CO, injection can be recognized from inverted

diffusivity.

 Inverted velocity cannot reconstruct the hydrofacies.
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* Implement PT by multilevel

 Implement ST by P-wave pulses
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Figure 1. “true” vs. inverted results in three scenarios. The left and right two columns

show the tomograms derived from PT and ST, respectively. For each scenario, the first

row displays the diffusivity and velocity tomograms prior to CO; injection. The second
and third rows give the results of diffusivity and velocity differences, respectively.

step 4: repetition of PT and ST
* Implement PT by multilevel CO,

 Implement ST by P-wave pulses

Individual and joint clustering structures

 Individual clustering results are comparable in the scenarios “homo” and

“2layers A”
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Results and discussion

* PT resolves the more vertical-like shape due to the larger variance of hydraulic

travel times

 Heterogeneity masks the plume in the highly permeable layer for PT

« Combination of the results provides a better estimation of the main plume shape
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Figure 2. Individual and joint clustering results according to the
inverted tomograms. The numbers in each tomogram present the
information of pixel misclassification error rate (blue: overestimate
rate; green: underestimate rate; red: total misclassification rate).
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Calculated CO, saturations

* The errors between the “true” and calculated saturations (1-plume) show a strong

correlation with the underestimation rate

* The errors of the joint clustering structures remainin a
the individual clustering structures

 Two secondary plumes are distinguished based on the

» Calibration of the mixed-phase specific storage (2-plume) provides insight in the

saturation of each secondary plume
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Clustering

* Base on a modified k-means approach
e Centroids of the clusters are determined by data histogram
e Data distribution is composed of two or more Gaussian functions

e Reservoir structure is reconstructed by clustering inverted diffusivities

 Plume extent is determined by clustering the diffusivity or velocity
difference individually (1-D clustering) or jointly (2-D clustering)
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Figure 5. Underestimate rate vs. saturation
errors. The saturation error is defined as the ratio
of the the discrepancy between the calculated

and “true” saturation and the “true” saturation.
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Figure 3. Average saturations of individual and joint clustering

structures compared to “true” saturations. The plume

with an integrated value of saturation. The white dot line indicates

the boundary of two adjacent layers.
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Figure 4. Saturations of individual and joint clustering structures
comared to “true” saturations. The plume consists of two “secondary
plumes”, and each plume has an integrated saturation value. The
white dot line indicates the boundary of two adjacent layers.
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Conclusions

* The structure of the reservoir prior to CO, injection can be
reconstructed by PT, which can be utilized as a prior
information for the following zonal calibration.

* In general, the capability of reproducing the plume shape is
comparable for PT and ST. However, neither PT nor ST can
directly quantify the saturation by the inverted values.

 PT can resolve more vertical-like shape due to the larger
variance of hydraulic travel times. Heterogeneity of the
permeability can however readily mask the plume in highly
conductive layer.

 Joint clustering can alleviate the underestimation of the
plume shape, which is essential for reducing the errors of
estimated saturations.

 PT can complement ST by improving the delineation of
plume shape and estimated saturations.
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