NUMERICALLY STABLE APPROACH FOR HIGH-PRECISION ORBIT INTEGRATION USING ENCKE's METHOD AND EQUINOCTIAL ELEMENTS

Difference between dynamic orbit iterations after convergence

2b)

2c)

Fig 2a: Shows the difference between orbit iterations in the spatial domain. All integration methods have the largest errors in the along-track axis.
Fig 2b: Detail view of improved Enke method using equinoctial elements. Numerical artefacts Fig 2b: Detail view of improved E
due to machine precision visible.
Fig 2c: Shows the difference between orbit iterations in the spectral domain. All integration parts of the spectrum indicate that the errors in this band are due to machine precision.
Type of reference motion and parametrization
\square Initial position and velocity
Kepler elements (first epoch)
Kepler elements (best fit)
Equinoctial elements (first epoch) Equinoctial elements (best fit)

 smaller integral is offset by the ins
accuracy of the reference motion.

Minimizing the forces to be integrated by
using a best-fit Kepler ellipse does not lead using a best-fit Kepler ellipse does not lead
to better results. The reference motion computed from Kepler elements has compufted from Kepler elements has double precision arithmetic.

Going back to a a reference ellipses at the first epoch, use of equinoctial elements for
the parar the parametrization leads to significantly
smaller deviations betwe ite smaller deviations between iteration steps,
on the order of $20 \mu \mathrm{~m}$ (see figure $2 a \mathrm{l}$ on the order of $20 \mu \mathrm{~m}$ (see figure 2a). The
overall error in integration is improved by overall error in integration is improved by
an order of magnitude (see figure 2c).

By using a best-fit reference ellipse, we minimize the power of the computed minimize the power of the computed
integral. This leads to a deviation between integrations of only machine precision over a large part of the spectrum (see figure 2c and box Precision). Most of the remaining error
is at very long wavelengths, above $\sim 1 / \mathrm{rev}$.

Fig 6: Separation between reference motion and integrated orbit over one day.

We improved on Enke's method by using a best-fit Kepler ellipses as We improved on Enke's method by using a best-
reference motion for dynamic orbit integration.
We show that using equinoctial elements for the parametrization of We show that using equinoctial elements for the parametrization of
this ellipse leads to a substantial increase in precision for the result of the dynamic orbit integration.
A need for higher precision would necessitate the consistent use of quadruple precision arithmetic.
 The equinoctial elements ${ }^{(2)}$ are non-singular derived from the equinoctial elements with high precision and efficiency, as no trigonometric functions are used. In terms of Kepler elements,
the equinoctial elements are given by:
the equinoctial elements are given by:
$\begin{array}{lll}a=a & h=e \sin (\omega+\Omega) & p=\tan (i / 2) \sin \Omega \\ \lambda=M+\omega+\Omega & k=e \cos (\omega+\Omega) & q=\tan (i / 2) \cos \Omega\end{array}$

We inspect the values for one coordinate at a random
point along the orbit in two succesive iteration steps: Linear motion: Best fit using equinoctials $\begin{array}{ll}\text { Linear motion: } & \text { Best fit using equinoctials } \\ 6436944.4055793351 \mathrm{~m} & 6436944.4056150075 \mathrm{~m}\end{array}$ $\begin{array}{ll}646944.4055793351 \mathrm{~m} & 6436944.4056150075 \mathrm{~m} \\ 6436944.405785714 \mathrm{~m} & 6436944.4056150084 \mathrm{~m}\end{array}$ The improved Enke approach using a best fit Kepler
ellipses provides 15 digits of precision.

