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Dynamic orbits play an important role in the
setup of the observation equations in low-low
satellite-to-satellite gravity field
determination. These orbits are determined
through integration of the accelerations
acting on a satellite, which can then be added
to a known or estimated initial state.

We show investigations into the precision of
an improved Enke approach[1] to the
numerical integration of dynamic orbits.

Our approach allows for computation of
dynamic orbits with repeatability at machine
precision over a large swath of the spectral
domain.
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The position of a satellite along its orbit can
be interpreted as the sum of a well-
described reference motion and the
integral of all acting residual accelerations f
not inluded in the reference motion.

Enke approach to integration

Fig 3: In the simplest case the reference
motion is linear, as described by an initial
position and velocity r0, v0. This may lead to
the integrated accelerations f becoming
large, and possibly numerically difficult.

We improved on Enke's method by using a best-fit Kepler ellipses as
reference motion for dynamic orbit integration.

We show that using equinoctial elements for the parametrization of
this ellipse leads to a substantial increase in precision for the result of
the dynamic orbit integration.

A need for higher precision would necessitate the consistent use of
quadruple precision arithmetic.

Results

We compute 24h dynamic orbit arcs from
real data by integrating all acting
accelerations (as measured by the
accelerometer and computed from
gravitational background models) using a
polynomial integration approach. An initial
orbit is used as a taylor point for the
evaluation of force models.

The integrated orbit is then fitted to GPS
observations. We use this fitted orbit as the
taylor point while repeating the integration.
After some iterations, the orbit will converge.
This can be observed in the coordinate
changes between iterations.

After such convergence occurs, we can
compare the results from two succesive
iterations of orbit integration. For different
integration algorithms, this coordinate
difference can be of vastly different
magnitude, giving an indication to the
performance of the method.

Thus, the magnitude of the orbit difference
between iterations after convergence can be
used as an indicator for the quality of the
integration algorithm.

Methods

Fig 2a: Shows the difference between orbit iterations in the spatial domain. All integration
methods have the largest errors in the along-track axis.

Fig 2b: Detail view of improved Enke method using equinoctial elements. Numerical artefacts
due to machine precision visible.

Fig 2c: Shows the difference between orbit iterations in the spectral domain. All integration
methods have the largest error at a frequency of once per revolution (dark blue line). Flat
parts of the spectrum indicate that the errors in this band are due to machine precision.

Spatial domain Spatial domain - detail view

Using a linear reference motion, we observe
differences on the order of 100µm between
successive integrations. This is magnitudes
larger than for example the GRACE K-Band
ranging accuracy. As in all other cases, the
differences are largest in the along-track
component.

Using a first epoch reference ellipse
computed with Kepler elements, we can
observe no improvement to the integration
results over the linear reference motion (see
figure 2a). The quality gain from computing a
smaller integral is offset by the insufficient
accuracy of the reference motion.

Minimizing the forces to be integrated by
using a best-fit Kepler ellipse does not lead
to better results. The reference motion
computed from Kepler elements has
insufficient accuracy when comuted in
double precision arithmetic.

Going back to a a reference ellipses at the
first epoch, use of equinoctial elements for
the parametrization leads to significantly
smaller deviations between iteration steps,
on the order of 20µm (see figure 2a). The
overall error in integration is improved by
an order of magnitude (see figure 2c).

By using a best-fit reference ellipse, we
minimize the power of the computed
integral. This leads to a deviation between
iterations of only machine precision over a
large part of the spectrum (see figure 2c and
box Precision). Most of the remaining error
is at very long wavelengths, above ~1/rev.
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Type of reference motion and parametrization

The equinoctial elements[2] are non-singular for all
eliptical orbits. Position and velocity can be
derived from the equinoctial elements with high
precision and efficiency, as no trigonometric
functions are used. In terms of Kepler elements,
the equinoctial elements are given by:

Equinoctial elements

a = a
λ = M + ω + Ω

h = e sin(ω+Ω)
k = e cos(ω+Ω)

p = tan(i/2) sin Ω
q = tan(i/2) cos Ω

Fig 6: Separation between reference motion and integrated orbit over one day.

We inspect the values for one coordinate at a random
point along the orbit in two succesive iteration steps:

Fig 1: Processing steps from initial
observations to comparison result.

Precision

Fig 4: Enke suggests the use of the keplerian
ellipse at the first epoch as a reference
motion, leading to a smaller integral.

Fig 5: We refine this approach by determining
a best-fit orbital ellipse, thus minimizing the
energy of the integral of the accelerations.

Linear motion:
6436944.4055793351m
6436944.4055785714m

Best fit using equinoctials:
6436944.4056150075m
6436944.4056150084m

The improved Enke approach using a best fit Kepler
ellipses provides 15 digits of precision.
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