

Variations of hydrological characteristics at the rivers of different size in the Lena river basin

Olga Makarieva^{1,2}, Nikita Tananaev³, Luidmila Lebedeva³, Evdokiya Popova⁴

¹St. Petersburg State University, St. Petersburg ²Gidrotehproekt Ltd, St. Petersburg ³Melnikov Permafrost Institute, Yakutsk ⁴Federal Service for Hydrometeorology and Environmental Monitoring, Yakutia department, Yakutsk RUSSIA omakarieva@gmail.com

The study is supported by Russian Foundation for Basic Research (project 15-35-21146 mol_a)

New database of daily runoff for the Lena River basin (historical period up to 2013)

Area, km²	Number of gauges (including Olenek, Yana and Indigirka)		
<100	15		
100-200		7	
200-1000		14	
1000-10000		49	
10000-50000		42	
50000-150000		18	
>150000		13	
Σ		158	
ArcticRIMS		21	

	Average	Maximum
New database	54	89
ArcticRIMS	56	75

New database of daily runoff for the Lena River basin for historical period up to 2013

Area, km²	Number of gauges (including Olenek, Yana and Indigirka)
<100	15
100-200	7
200-1000	14
1000-10000	49
10000-50000	42
50000-150000	18
>150000	13
Σ	158
ArcticRIMS	21

	Average	Maximum
New database	54	89
ArcticRIMS	56	75

Nonparametric methods

- Trend detection was performed using the <u>Mann–Kendall trend test and the</u> <u>Spearman's rank correlation test</u>
- Whence both tests detected trend in the time-series with p ≤ 0.05, serial correlation coefficient at lag 1 r(1) was calculated. <u>'Trend-free pre-whitening' (TFPW)</u> was performed for the series with significant r(1) values, and those with p ≤ 0.05 for MK tau after TFPW procedure were deemed showing persistent trend pattern.
- <u>The nonparametric Pettitt's test</u> was employed in preliminary analysis of the dataset to detect the presence of at least one 'breakdown-type' discontinuity in the timeseries. Whence the Pettitt's test marked a significant change-point, the series were admitted as nonstationary, and <u>the Buishand range test</u> was used to search for numerous discontinuities. Significantly nonstationary time-series were subsetted using a detected change point as a divide, and <u>t-test</u> applied to the subsets to confirm the difference in location parameter.
- Trend magnitude for stationary time-series was assessed as the Theil-Sen slope per unit time multiplied by period length and related to long-term average flow (discharge). In nonstationary series, Hodges-Lehmann estimator was calculated for each subset, and difference between the estimator values was divided by its first (earliest) value to derive a relative magnitude.

Detected trends in mean annual daily flow (MADF)

32 of the 96 studied time-series showed significant trends in MADF (2 negative, 30 positive). Positive trend magnitude varies from 14.3% to 184.2%, and all-records average is 40%. Negative are -14,7 and -17,8%.

Detected trends in minimum flow (Qmin)

Kempendiay at Chaingda, + trend

31 of the 48 records showed trends in Q_{\min} , 2 negative and 29 positive.

Detected trends in maximum flow (Qmax)

Trends in Q_{max} were found in 8 timeseries, negative at 2 and positive at 6 gauges. Trend magnitude varies from -30.8% to -38.6% (-34.7% on average) for negative, and from 18% to 108.7% (54.9%) for positive trends.

SUMMARY

A relatively small number of significant trends found in our study may be attributed to a more thorough investigation of the significance of trends, compared to recent paper of *Dzhamalov et al.*, [2012], which lacks the description of employed trend detection techniques.

Non-significant trends yield an average magnitude +5.3% (positive) and -2.7% (negative), hence at or below the instrumental accuracy of discharge measurements.