Spontaneous aseismic and seismic slip on evolving faults in a continuum-mechanics framew
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1. Objectives and summary 3. Stability analysis: response of a predefined fault to tectonic loading
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. . . . . . sponse spectrum (Fig. 4a) to that given in Liu and Rice (2007) (Fig. 4b).
tool to investigate links between permanent deformation and slip transients
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and Rice (2007) (Figure 4). Seismic slip rates are reached (Figure 5), but are currently under-resolved in order to model multiple seismic events.

The application of rate-and state dependent friction in the entire, cohesionless upper plate results in a different fault orientation (section 4). Deformation
localizes only for rate-weakening friction for RSF parameter within the lab range. On these spontaneously developing rate-weakening faults, stable slid-
ing or aseismic and seismic slip transients spontaneously occur. Stronger localization of deformation and slower fault evolution is achieved through
strain weakening of cohesion (section 5). Currently, we are investigating the transition between strain weakening and rate-and state dependent friction.

We observe a similar transition from decaying oscillations, simple periodic, complex periodic to seismic events. Figure 5: Shear strain rates during seismic wave propagation.

5. Long-term fault evolution
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plate (i.e. C=0 Pa). Below, we vary the RSF parameters a and b inside the upper plate. and the deformation only localizes to some degree. To introduce permanent weakening of the material
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gly 9 9
setup, adapted from Liu and Rice (2007). : d @ _5 | | | | |
. % E il £ 1 - Transition between long-term strain-weakening and short-term rate-and state friction and different time scales?
Continuum mechanics approach: Solve for velocity and Ove  Ovy _ o 004,  00ay OP _ pD% g 00ys doy, OP _ p% e 2 s 7 8 5 | - computation of state evolution for L*
. T — Yy 2 > -8 a . . . . . .
pressure fields: dw - op ded G G D or — dy oy = Dt = g = > — - evolution of L* with plastic strain towards L (motivated by Marone and Kilgore,1993):
enters into: 2 2 -9 ~fo 150 200 y
. N Time [yr]
Visco-elasto-plastic constitutitive relationship: Visco-plastic viscosity: Yield strength: . . K . : Mo 250 300 350 4QI'(i)me [;lr?o 500 550 600 650 new. L* = L° — l (LC — L) ,LC — ZVOA:C, L* =1 for 8% > Y0
) ) X [km] 0 _
O_gj _ anp Zé;j 4 O',g(]?ld(l . Z), 7 — GAtcomp - — B Ny, Ty = Ovield <« . 1 = C + ,uP Figure 6: (a-b), Visco-plastic viscosity for (a-b) rate-strengthening and (c) rate-weakening friction. (d)Time series of slow events in (c), inlet shows seismic event. a o0 o
G Atcomp + P = vl = 5z yield = g .
comp T flvp i 281 I(vp) _ Does deformation localize under rate-strengthening and rate-weakening friction in the upper plate? E 40 = s
Sometimes. A fault-like shear band develops with a significantly different orientation than the predefined fault in section 3 (Fig. 3). > 60 3 S
new: invariant formulation of RSF: 40 9 g"H(p)dg; () On a rate- strengthening fault, deformation is rather diffuse for RSF parameters inside the lab range (Figure 6a), while stronger locali- 80 - - - - - - Z _J §
rep|acement of 5||p Ve|0city, normal and shear stress E =1 — _L— zation appears for RSF parameters outside of the lab range (Figure 6b) Strong localization of deformation occurs for realistic RSF 0 S0 100 )’I(5[gm] 200 250 300 - 0 50 100 )1(5“(() ] 200 250 300
. . . B ./ = . o . . o m
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