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Monte-Carlo analysis
(without surface samples,

n = 10, 000, Hidy et al.,2010)

  Re-run Monte Carlo analysis with 
new, time-dependendet produc-

tion rate (Hidy et al., 2010)

Calculate surface age with 
time-dependent scaling scheme 
(‘Lm‘) using the CRONUS Earth 

calculator (Balco et al., 2008)

Turn ‚Lm‘-age into an time-depen-
dent production rate

Turn ‚St‘-age into a most probable 
10Be surface concentration 

Subtract most probable inheritance 
from surface sample to archieve 

10Be concentration since terrace for-
mation

Calculate surface age with time-de-
pendet scaling scheme (‘Lm‘) using 
the CRONUS Earth calculator (Balco 

et al., 2008)

-  Dating of terrace surfaces 
with the cosmogenic radio-
nuclide (TCN) 10Be (Fig. 2)
     
-  4 depth pro�les on di�e-
rent terraces (Fig. 3 A&B)
     
-  Sampling of either exclusi-
vely sand (0.25 - 0.5 mm) or 
clasts (1 - 3 cm)
        

    Surface samples have lower concentrations than ex-
pected      we hypothesize due to in�ation (see Fig. 3)
    

    We performed two terrace surface age calculations: 
      

1) A Monte-Carlo depth-pro�le approach without the sur-
face samples (with & without assuming in�ation) (Hidy et 
al., 2010)
    

2) Surface sample age calculation with the CRONUS Earth 
calculator after subtracting inheritance (Balco et al., 2008)

                                                     no erosion/                                                            age based on
   ‘Lm’- age ± 1σ (kyr)             no in�ation                   in�ation                       surface sample
                                                                                      
Pro�le 04                                    298 ± 17               243 ± 14  (30-40 cm)
Pro�le 13                                    293 ±14                 261 ±12   (20-25 cm)       242 ± 18 
Pro�le 10                                    100 ± 10                  86 ± 8       (0-10 cm)          98 ± 7
Pro�le 30a                  (top)         70 ± 5 
                               (bottom)        75 ±12                55  ± 11    (40-45 cm)
          30b  (bottom + top)        70 + 75 = 145    70 + 55 = 125

Fluvial �ll terraces record changes in past sediment to water discharge ratios. Across 
the world, �ll terrace formation in glaciated catchments has been linked to variable se-
diment production and river discharge over glacial–interglacial cycles. 
However, so far, little is known about how changes in global climate on multi-millenni-
al timescales a�ected sediment dynamics in regions far from major glaciers and ice 
sheets. Several recent studies in the Central Andes, for example,  have linked terrace 
formation to changes in precipitation associated with precessional climate forcing (e.g. 
Schildgen et al., 2016; Ste�en et al., 2010). In this study, we investigate the timing of �u-
vial �ll terrace formation in the Quebrada del Toro, an intermontane basin located in 
the Eastern Cordillera of the southern-central Andes in NW Argentina (Fig. 1). 

   Final ages vary great-
ly with the amount of 
in�ation and with the 
approach

   Surface-clast samples 
support the hypothe-
sis of in�ation (no-in-
�ation scenarios give 
ages that are too old)

-  Terrace surface ages based on 10Be depth 
pro�le interpretations are up to 50 kyr youn-
ger when in�ation is taken into account
      in�ation hypothesis supported by surface 
clast ages and thus in�ation should be consi-
dered when working in areas characterized 
by desert pavements 

-  Terrace surface ages fall in non- saline and 
thus wetter climate phases compared to the 
Lake Titicaca paleoclimate record from Baker 
& Fritz (2015) (Fig. 6)

-  Remnants of further terraces between and 
above the dated ones additionally indicate 
the formation of terraces related to the 
100-kyr climate cycle (eccentricity) 

Eccentricity-driven fluvial fill terrace formation in the southern-central Andes, NW Argentina
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Fig. 6 Terrace surface age-ranges (shaded in green) compared to a paleoclimate 
record from Lake Titicaca (Baker & Fritz, 2015). The Lake Titicaca record shows in-
creased salinity during major interglacial stages (shaded in grey). For the location 
of Lake Titicaca see Fig. 1. This �gure is modi�ed from Baker & Fritz (2015).

Fig. 6 Terrace surface age-ranges (shaded in green) compared to a paleoclimate 
record from Lake Titicaca (Baker & Fritz, 2015). The Lake Titicaca record shows in-
creased salinity during major interglacial stages (shaded in grey). For the location 
of Lake Titicaca see Fig. 1. This �gure is modi�ed from Baker & Fritz (2015).

Fig. 5 Simpli�ed model of �ll 
terrace distribution and 
location of the pits. Ages 
show the resulting age 
range of all di�erent calcula-
tion approaches. 

Table 1. Summary of calculated terraces surface abandonment ages.

Fig. 4 10Be concentration depth pro�-
les of the 4 terrace pits. 2 pits on E and 
W side of main channel, respectively.  
Please note that pro�le 30 records 2 
events. Error bars are smaller than 
circle sizes. 

soil in�ation. Aeolian imported sand/silt accumulates at the surface and has therefore 
a lower 10Be concentration. Picture downloaded from *.

Fig. 3 A & B) Field pictures from a 
cosmo pit. C) Theoretical develop-
ment of a desert pavement based on 

Fig. 2 CRN in-situ production decreases 
exponentially with depth. By �tting an 
exponential curve to the samples, the 
surface exposure age can be calculated.

Fig. 1 A) Mean annual rainfall in the Central Andes based on TRMM satellite data and location of the study area Quebrada del Toro 
in NW Argentina. B) Topographic map of the Quebrada del Toro (SRTM 30m).  C) Fluvial �ll terraces in the upper part of  the Quebra-
da del Toro. Within the �ll, we observe a minimum of 5 terrace levels with pronounced di�erences in their extent and preservation. 
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da del Toro. Within the �ll, we observe a minimum of 5 terrace levels with pronounced di�erences in their extent and preservation. 
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