RAIN RADAR MEASUREMENT ERROR ESTIMATION USING DATA ASSIMILATION
IN AN ADVECTION-BASED NOWCASTING SYSTEM

CLAIRE MERKER', MARCO CLEMENS', AND FELIX AMENT"?

'Meteorologisches Institut, Universitat Hamburg, Hamburg, Germany, ’Max Planck Institute for Meteorology, Hamburg, Germany
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- spatially and temporally variable . data assimilation... Data for assimilation and verification: 4 min. 9). The ensemble spread oy yields a spatially and tem- ‘
uncertainty information. - Single radar data observations porally variable uncertainty field. Its potential is anal- 0
. 40x40 km grid with 5 km thinning length, The ensemble comprises 50 members. Fig. ysed by comparison to a constant spread, the mean
shifted grids for independent verification 7 shows a time series of the precipitation spread of the system o. = 3.45dB. Statistically, the ab- e
Data and Ensemble Forecast data (Fig. 6) forecast at one location, demonstrating solute model mean error e must be equal to the pre- |
the forecast-assimilation cycle. The en- dicted model uncertainty o (Fig. 10). Three scores are |
Areal precipitation data: Probabilistic precipitation nowcasting: INITIALISATION s.emb.le.mean attheend ofthe forecasting used.to anz.alyse the skill of the system and its ability to
. . . - Local Ensemble Transform Kalman Filter (LETKF) timeisin gOOd agreement with the obser- pred|Ct dan Improved SyStem Uncertalnty.
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. - Observations for assimilation Vatlon (Flg 8) | ' — |
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Figure 1: Single radar precipitation data Figure 3: Nowcasting motion vectors T e e quently into the predicted uncertainty range. HITS (%) 78.19 85.54
(03.07.2013 15:32:00 UTC). for a region of the network domain.
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5 oof : R e — B e S oor 1 : W This study presents a framework constant uncertainty information. To fur-
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