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The Idea

This work presents a method to combine

precipitation data from different sources

through ensemble data assimilation. The

aim is to obtain

• an areal precipitation product,

• spatially and temporally variable

uncertainty information.

By using nowcasting, the uncertainty in-

formation evolves consistently in time and

space and is flow dependent. Areal uncer-

tainty information is valuable for e.g.

• probabilistic hydrological modeling,

• data assimilation…

Data and Ensemble Forecast

Areal precipitation data:

• Four X-band radars in a network

north-west of Hamburg, Germany

• Single radar data with 30 s temporal,

60m and 1◦ spatial resolution (Fig. 1)

• Network composite product on a

250x250m Cartesian grid (Fig. 2)

Figure 1: Single radar precipitation data
(03.07.2013 15:32:00 UTC).

Figure 2: Composite network precipitation
data (03.07.2013 15:32:00 UTC).

Probabilistic precipitation nowcasting:

• Forecast of composite data by advection

• Motion vectors computed through

correlation analysis (Fig. 3)

• Ensemble generation by perturbation

of the motion vector field with spatially

correlated random noise (Fig. 4)

Figure 3: Nowcasting motion vectors
for a region of the network domain.

Figure 4: Example of members from the
ensemble precipitation forecast (03.07.2013
15:32:00 UTC).

Experiment

Data assimilation

• combines forecast and observation

• under consideration of the uncertainty of

both information sources (Fig. 5).

Data for assimilation and verification:

• Single radar data observations

• 40x40 km grid with 5 km thinning length,

shifted grids for independent verification

data (Fig. 6)

INITIALISATION

- Local Ensemble Transform Kalman Filter (LETKF)

- Ensemble forecast model and members

- Observations for assimilation

ENSEMBLE FORECAST

Forecast state xb
i until next observation y

PERFORM ANALYSISWITH LETKF

Compute analysis ensemble mean:

x̂a = x̂b + PbHT [HPbHT + R ]−1[y − Hx̂b]

Pb: model error covariance

R : observation error covariance

The analysis ensemble xa
i is generated around x̂a

using a linear combination of the perturbations

of xb
i .

ENSEMBLE FORECAST

Forecast until end of forecast time

Figure 5: Main steps of data assimilation cycle.

Figure 6: Assimilation and verification
locations.

The experiment is run with

• 30min precipitation forecast starting

at 15:26:00 UTC (03.07.2013),

• 2min time step and

• assimilation of observations every

4min.

The ensemble comprises 50members. Fig.

7 shows a time series of the precipitation

forecast at one location, demonstrating

the forecast-assimilation cycle. The en-

semblemeanat the endof the forecasting

time is in good agreement with the obser-

vation (Fig. 8).

Figure 7: Data assimilation cycle at an
observation location.

Figure 8: Ensemble mean after 30min
forecast (top) and corresponding single
radar observation (bottom).

Results

The ensemble spread (here standard deviation σ) is a

description of the forecast uncertainty. Through the

forecast-assimilation cycle, the ensemble spread σv
evolves according to the flow and taking into account

additional information that reduces uncertainty (Fig.

9). The ensemble spread σv yields a spatially and tem-

porally variable uncertainty field. Its potential is anal-

ysed by comparison to a constant spread, the mean

spread of the system σc = 3.45 dB. Statistically, the ab-

solute model mean error ε must be equal to the pre-

dicted model uncertainty σ (Fig. 10). Three scores are

used to analyse the skill of the system and its ability to

predict an improved system uncertainty.

Forecast skill: Performance of ensemble mean µ:

Smean =
√

1
n
∑

n(µ− obs)2 = 2.78 dB

Uncertainty prediction skill: Deviation from the perfect

spread-skill relation:

Sspread =
√

1
n
∑

n(σn − εn)2

Percentage of hits: Amount of model error values

within the predicted uncertainty range:

HITS = 100
n
∑

n(εn ≤ σn)

Results (Tab. 1) show that the variable spread σv yields

a better uncertainty forecast than the constant spread

σv. It shows a smaller deviation from the theoretical

spread-skill relation and model errors fall more fre-

quently into the predicted uncertainty range.

Figure 9: Ensemble spread σv after
8min (top) and 25min (bottom)
forecast.
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Figure 10: Theoretical spread-skill
relation.

Table 1: Results for uncertainty
prediction assessment.

Score σc σv
Sspread (dB) 2.35 2.06

HITS (%) 78.19 85.54

Conclusions and Outlook

This study presents a framework

• combining precipitation data and

• providing a flow dependent, spatially

and temporally variable and consistent

uncertainty description.

The uncertainty field obtained by this

method yields better error estimation than

constant uncertainty information. To fur-

ther study the potential of the method, it

should be applied

• in a more realistic setup,

• with more observation sources (rain

gauges, micro rain radars…),

• and using a longer time period.
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