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Navigation Water Mass Transformation along the Antarctic Peninsula

UCDW: Upper Circumpolar Deep Water
LCDW: Lower CDW
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2.  Water masses also transform at mid-depths before reaching the surface
3. UCDW-core eddies transport warm waters onto the continental slope
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UCDW lens loses heat to LCDW beneath as shear instability drives turbulent mixing
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Eddy-tide interaction enhances submesoscale instabilities
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1. A submesoscale lens of UCDW propagates along-slope within
LCDW;

is modified semi-diurnally;

loses heat to LCDW across the bottom boundary;

where diftusivities are elevated and shear instabilities arise.
Shear-dominated EPV along the bottom boundary is
consistent with a gradient flux from UCDW to LCDW;

and associated with symmetric instabilities forced by the
barotropic tide.
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Shear instabilities drive turbulent mixing across the UCDW-
LCDW boundary.

Summary
Conclusions

T




Navigation Water Mass Transformation along the Antarctic Peninsula

processes

Summary

instabilities

1. A submesoscale lens of UCDW propagates along-slope within
LCDW;

is modified semi-diurnally;

loses heat to LCDW across the bottom boundary;

where diftusivities are elevated and shear instabilities arise.
Shear-dominated EPV along the bottom boundary is
consistent with a gradient flux from UCDW to LCDW;

and associated with symmetric instabilities forced by the
barotropic tide.

Al

instabilities 6

Shear instabilities drive turbulent mixing across the UCDW-
LCDW boundary.

Summary
Conclusions

T




<4

L] [ ] l“\ °
Nat |
Navigation N E C SCIENCE OF THE RAFY Oceanography Centre

PRIFYSGOL

=4 BANGOR IMIAS

INSTITUTE FOR MARINE AND

UNIVERSITY ANTARCTIC STUDIES

NATURAL ENVIRONMENT RESEARCH COUNCIL 1

i, Conclusions

N— 1.Water masses transform at depth over the Antarctic
continental slope;

supports the hypothesis that diabatic processes contribute to
mid-depth watermass transformation.

2. Eddy-tide interactions can enhance submesoscale
instabilities, driving turbulent mixing;

instabilities a mechanism by which UCDW-core eddies can disperse heat
onto the slope and at mid-depths, where the melting of marine
glaciers is linked to ocean heat content.
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