

Soil micromorphology, geochemistry and microbiology at two sites on James Ross Island, Maritime Antarctica Lars A. Meier^{1*}, Patryk Krauze², Isabel Prater³, Thomas Scholten¹, Dirk Wagner², Peter Kühn¹, Carsten W. Mueller³

¹ Eberhard Karls University Tübingen, Department of Geosciences, Research Area Geography, Chair of Soil Science and Geomorphology, Tübingen, Germany; ² GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 5.3 Geomicrobiology, Potsdam, Germany; ³ TU München, Lehrstuhl für Bodenkunde, Freising, Germany

1. INTRODUCTION


Referring to the fundamental question in ecosystem research, how biotic and abiotic processes interact, only few studies exist for polar environments that integrate microbial and pedogenic research. Antarctica offers the exceptional chance to study the impact of microbial processes on soil formation in a pristine "laboratory", without higher plants or digging animals.

Since the effect of climate change on microbial community structure/functions and on soil formation in Antarctica is largely unknown, the knowledge about the state of microbial communities and soil formation is crucial for the evaluation of possible changes due to climate change. Integrated results of soil physical, pedochemical micromorphological and microbial analyses are presented.

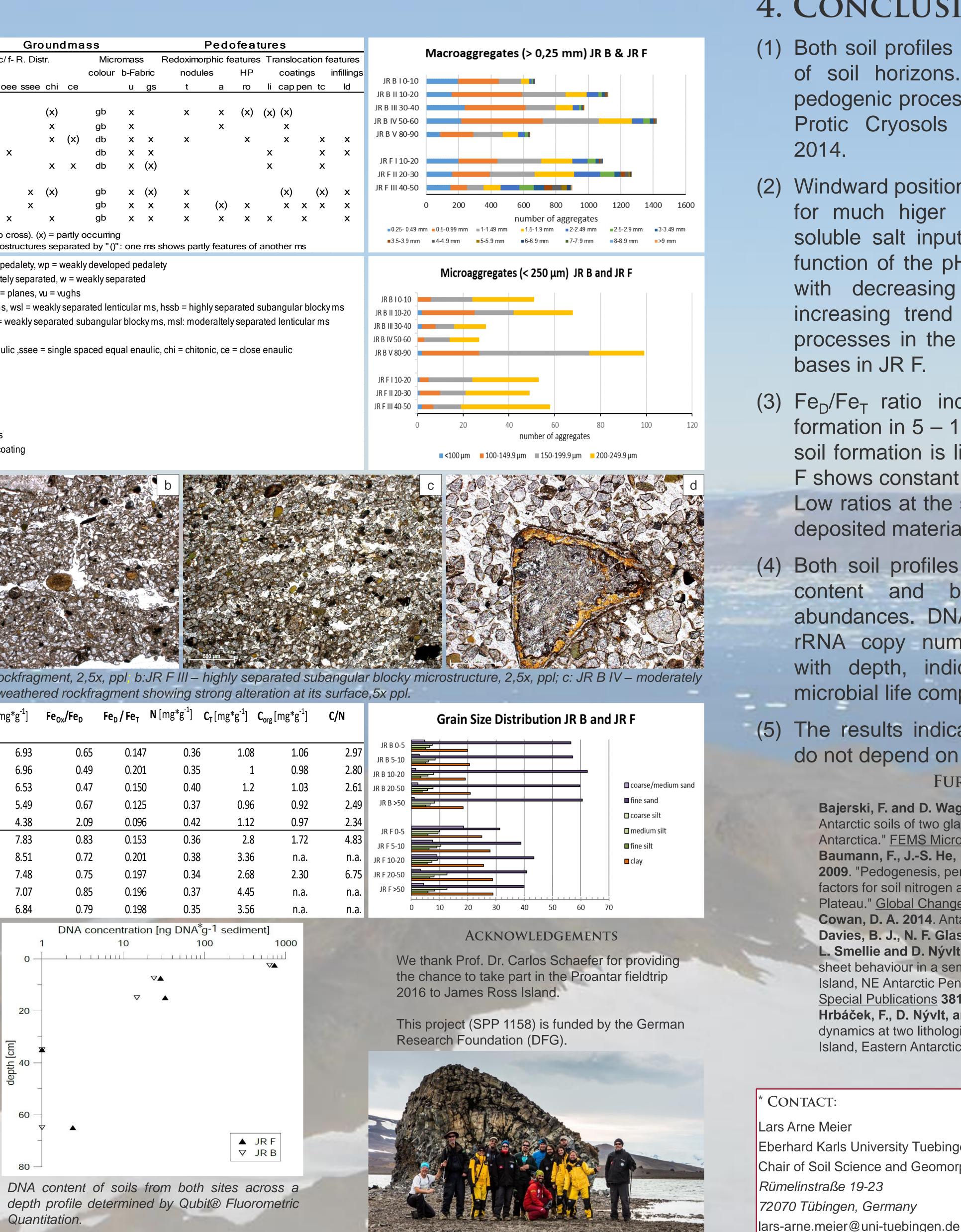
2. MATERIALS AND METHODS

Study area

- Ulu-Peninsula, James Ross Island, Maritime Antarctica
- Cold, polar-continental climate

Sites JR B and JR F on James Ross Island (Picture: ESA Sentinel 1). Field and lab work

- Soil sampling (2 profiles, representing lee- and windward location, 5 depth increments)
- Micromorphology, C, N, pH, grain size distribution, pedogenic oxides, DNA content and microbial abundances
- macroaggregates were counted for the whole thin section, microaggregates in 10 pictures



3. RESULTS																						
Slice	Depth	Agg	regat	tion	Vo	ids	Mi	cros *		Groundma						ss Pe						
			Pedality	,							c/ f- R. Distr.								•	kimorphic feature		
	[cm]	wp	mp hp	ds	spv xp\	/plvi	u		cm	ca c	ee ss	see c	hi		colou	ır b-⊢a u			iodules t	s a	HP ro	
JR B (St.M	-														_							
JR B I JR B II	0-10 10-20		x	w w		(x)		/ sgm	x (x)	(x)			x) x		gb ab	X		2	X	x x	(x)	
JR B III	30-40			w/m		(x) x		pgm wsl	. ,	×				(x)	gb db	x x	х		x	^	х	
JR B IV	50-60		Х	m/w		x (x	•	l (hssb)		X	Х				db	Х						
JR B V J R F (Bra ı	80-90 ndv Bav)	X		W	Х	(x)	(†19	s) pgm	Х	(x)			X	Х	db	Х	(x)					
JRFI	10-20		(x)	m		x (x	/	-m ssb	(x)		2	x (2	x)		gb	х	(x)	2	x			
JR F II JR F III	20-30 40-50		x x	m m/h				ssb (msl ssb (msl	• • •	x x		X	x		gb gb	X X	X X		x x	(x) x	X X	
The microm		I				,	,							rtlv oc	_		~		^	~	~	
* microstruc			-		•	_	•	,		•		, , ,	-	-		-	e ms	shows	partly	featu	res o	
Aggregatio	ture s) ss Distripution istr.)	ds = 0 : spv = : fis = 1 : msst : msst : cm = : gb = : u = u : t = tyt : FM = : li = lit	degree o = simple fissure, s o = mode = coarse greyish l indifferen pic, a = a = iron and	of sepa packir sgm = erately monic brown ntiated aggreg d man ings, c	aration; h ng voids single g v separat c, cg = ch , db = da l, gs = gr gate ganese ap = cap	n = high , xpv = c rain ms ted sub nito-geft ark brov ranostri	ily sepa comple s, pgm = angula uric,oee vn ated	lerately d rated, m x packing = pellicul r blocky r e = open	= moo g voids ar gra ns, we equal pocoa	derate s, pl = in ms ssb = enau	ely sep plane s, wsl = weakly	oarate es, vu = wea y sepa	ed, w = vu kly s arate	= wea ghs epara ed sub	aklys ted le angu	eparate enticula Ilar blo	ed ar ms, cky m	hssb = s, msl:	mode	raltely	v sepa	
a: JR F I			mina	tod		optin		Woath		dro	ckfr	am		+ 2	5v	nnl	h. 15			iably		
separate	-						-					•										
sample	pH _{H20}	E	C [µS*cm	ו ⁻¹]	Fe ⊤ [m	ng*g⁻¹]	Fe	_{ox} [mg*g	⁻¹] F	e _D [m	g*g ⁻¹]	F	e _{ox} /	/Fe _D	Fe	e _D / Fe	_T N	[mg*g	⁻¹] C 1	r[mg*	[;] g⁻¹]	
JR B 0-5	7	7.73	Ę	53.5		47.	03	4	.49		6.9	3		0.65	5	0.1	.47		0.36		1.08	
JR B 5-10	7	7.98	3	35.7		34.	57	3	.40		6.9	6		0.49	9	0.2	01	(0.35		1	
JR B 10-20	7	7.90	3	33.4		43.	54	3	.07		6.5	3		0.47	7	0.1	50	(0.40		1.2	
JR B 20-50		7.96		34.7		43.8			.66		5.4			0.67		0.1			0.37		0.96	
JR B > 50		8.14		58.4		45.4			.17		4.3			2.09		0.0			0.42		1.12	
JR F 0-5		8.58		943		51.2			.48		7.8			0.83		0.1			0.36		2.8	
JR F 5-10		8.05		557 200		42.3			.09		8.5			0.72		0.2			0.38		3.36	
JR F 10-20		7.74 , co		380		37.9			.58		7.4			0.75		0.1			0.34		2.68	
JR F 20-50		7.58 7.42		500 956		36. 34.			.02 .40		7.0 6.8			0.85 0.79		0.1 0.1			0.37 0.35		4.45 3.56	
JR F > 50									.40		0.04	4	5							1		
Bacteria 10 ⁴ 0	l abundan 10 ⁵		165 rR 10 ⁶	NA g 1()7	10 ⁸		10 ⁹		1	C	1	D	NA C		entrat 10	ion [ng Di	-NA [*] g 100		dime	
_				∇								_					∇					
20 —				\bigtriangledown	A						20)				7	7					
[cm]	$\blacktriangle \nabla$										[cm]	×										
depth [cm]											depth [cm] ₀ 5) —										
Ğ											de											

Abundances of the bacterial 16S rRNA genes revealed by quantitative PCR in the investigated soils from James Ross Island, Antarctica. The shown data represents mean values from triplicates.

▲ JRF ▽ JRB

Technische Universität München

4. CONCLUSION

(1) Both soil profiles show little to no development of soil horizons. Cryoturbation is the main pedogenic process. Both soils are classified as Protic Cryosols (eutric, loamic) after WRB

(2) Windward position of profile JR F is responsible for much higer pH values (>7) because of soluble salt input from sea spray. The depth function of the pH is opposing in both profiles with decreasing trend in JR F and an increasing trend in JR B indicating solution processes in the latter and additional input of bases in JR F.

(3) Fe_{D}/Fe_{T} ratio indicates weathering and soil formation in 5 - 10 cm of both profiles. At JR B soil formation is limited to that depth, while JR F shows constant rations throughout the profile. Low ratios at the surface are caused by freshly deposited material.

(4) Both soil profiles show similar trends in DNA content and bacterial 16S rRNA gene abundances. DNA content and bacterial 16S rRNA copy numbers decrease substantially with depth, indicating worse conditions for microbial life compared to the topmost layers.

(5) The results indicate that microbial "hot spots" do not depend on weathering. FURTHER READING

> Bajerski, F. and D. Wagner 2013. "Bacterial succession in Antarctic soils of two glacier forefields on Larsemann Hills, East Antarctica." FEMS Microbiology Ecology 85(1): 128-142. Baumann, F., J.-S. He, K. Schmidt, P. Kühn and T. Scholten 2009. "Pedogenesis, permafrost, and soil moisture as controlling factors for soil nitrogen and carbon contents across the Tibetan Plateau." Global Change Biology 15(12): 3001-3017. Cowan, D. A. 2014. Antarctic Terrestrial Microbiology, Springer. Davies, B. J., N. F. Glasser, J. L. Carrivick, M. J. Hambrey, J.

L. Smellie and D. Nývlt 2013. "Landscape evolution and icesheet behaviour in a semi-arid polar environment: James Ross Island, NE Antarctic Peninsula." Geological Society, London, Special Publications 381(1):353-395.

Hrbáček, F., D. Nývlt, and K. Láska 2016. Active layer thermal dynamics at two lithologically different sites on James Ross Island, Eastern Antarctic Peninsula. Catena 149(2):592-602

Eberhard Karls University Tuebingen Chair of Soil Science and Geomorphology

