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In this study, we analysed the variability of §'80 values and trace element rafios in the shell ayer (TL) (Liothyrella neozelanica and Gryphus vifreus)

microstructures of modern brachiopods, in order to assess which brachiopod shell portions
or taxa are the most reliable for reconstructing paleoenvironmental condifions.

Oxygen isotope compositions were measured in situ using the ion microprobe

technigue and frace element contents by Laser ablation coupled to an ICP-MS.
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