Lateral eddy diffusivity estimates from simulated and observed drifter trajectories a case study for the Agulhas Current system

Siren Rühs¹, V. Zhurbas², I.M. Koszalka¹, J.V. Durgadoo¹, A. Biastoch¹

MOTIVATION Dispersal of simulated Lagrangian trajectories not sufficiently diffusive!?

- Lagrangian analyses of particles advected with the flow fields of ocean models are extensively used to study connectivity (exchange pathways, timescales and volume transports) between distinct oceanic regions.
- Lagrangian eddy diffusivity, which quantifies the rate of particle dispersal due to turbulent processes, influences connectivity.
- Due to spatial and temporal discretization, turbulence is not fully resolved in modelled velocities, and the concept of eddy diffusivity is used for stochastic Lagrangian *parameterizations* of the effect of unresolved processes on particle trajectories

Yet, relations between observational- and model-based Lagrangian eddy diffusivities as well as eddy parameterizations are not yet clear

 \rightarrow Jointly assess eddy diffusivities from real drifter data and simulated trajectories

DATA and METHOD Lagrangian eddy diffusivity estimation based on simulated trajectories

References:

Blanke, B., & Raynaud, S. (1997). Kinematics of the Pacific Equatorial Undercurrent: An Eulerian and Lagrangian Approach from GCM Results

Durgadoo, J. V. et al. (2013). Agulhas Leakage Predominantly Responds to the Zhurbas, V. et al. (2014). Drifter-derived estimates of lateral eddy diffusivity in the Southern Hemisphere Westerlies. World Ocean with emphasis on the Indian Ocean and problems of parameterisation

Snapshot of current speed at 15 m depth simulated with the eddying model INALT01; 5° x 5° (2° x 2°) bins used for diffusivity estimations (and plotting) in four areas of interest: Agulhas Current (AC), Agulhas Retroflection (AR), Agulhas Return Current (ARC) and eastern South Atlantic Gyre (eSAG); region where virtual fluid particles were released (red dashed frame).

RESULT 1 Simulated trajectories capture asymptotic diffusive regimes for dynamically different regions

- Our study does not reveal the need for Lagrangian eddy parametrizations in Lagrangian analyses of daily to 5-day mean output of the eddy-resolving model INALT01
- Stochastic Lagrangian parametrizations in diffusion form may indeed be appropriate to mimic the effect of mesoscale turbulence for coarser resolution models
- Sensitivity of the diffusivity parameter to the temporal and spatial model resolution, as well as its spatial variability should be considered, which do not necessarily scale with EKE

CONCLUSIONS Implications for stochastic Lagrangian parametrizations

Averaging over all bins yields

- vs 5300 m²/s)
- 2800 m²/s)

