Quantifying the relationship between visibility degradation and PM2．5 constituents at a suburban site in Hong Kong：

香港科技大學
THE HONG KONG UNIVERSITY OF SCIEN

Differentiating contributions from hydrophilic and hydrophobic organic compounds

Yugen Li ${ }^{1}$ ，Hilda X．H．Huang ${ }^{2}$ ，Stephen M．Griffith ${ }^{\mathbf{3}}$ ，Cheng Wu ${ }^{1}$ ，Alexis K．H．Lau ${ }^{1}$ ，Jian Zhen Yu ${ }^{1,2,3^{*}}$
Division of Environment and sustainability，Hong Kong University of Science \＆Technology，Hong Kong，China
${ }^{2}$ Institute of Environment，Hong Kong University of Science \＆Technology，Hong Kong，China
＊Corresponding author email：jian．yu＠ust．hk

Background

Atmospheric aerosol plays a key role in air pollution and climate change issues．Aerosols directly influence the solar radiation balance and cause visibility degradation through absorption and scattering of light． extinction coefficient，$\sigma_{\text {ext }}$ ，which defines how efficiently light is attenuated by gases and aerosols in the air sample．

For analyzing the relationship between aerosol chemical composition and visible light extinction，Mie theory is the first and most robust approach，but requires a long period of size ion to link measured light extinction coefficients（dependent variable）with collocated aerosol comical compositions（independent variables）The Clear Pollud air chemical compositions（independent variables）．The
widely used IMPROVE formula is an example of this widely used IMPROVE formula is an example of this
method and is designed to reconstruct the light method and is designed to reconstruct
$\sigma_{\mathrm{et}}=3.0 f(\mathrm{RH})[\mathrm{AS}]$
$+1.3 .0 f(\mathrm{RH})[\mathrm{AN}]+4.0 \mathrm{R}_{\mathrm{oc}}{ }^{*}[\mathrm{OC}]$
With only limited success of IMPROVE or similar equations to model light extinction coefficients in Asia，there is still a need to explore＇localized＇equations to describe visibility degradation in relation to the chemical composition and optical properties of aerosols．
Furthermore，the light extinction contributions from speciated OC components has been largely unexplored．This study aims to attribute light extinction coefficients in greater depth to the OC components

Aerosol sampling and chemical analysis

In this study，we collected around 120 ambient $\mathrm{PM}_{2.5}$ samples at a suburban site of Hong Kong over a course of two years．Location is at the Hong Kong University of Science and Technology Air Quality Research Supersite （HKUST Supersite，$\quad 22^{\circ} 20.272^{\prime \prime N}$ ， $114^{\circ} 16.049{ }^{\prime \prime} \mathrm{E}$ ）．
Major chemical components obtained include ons，elements，different carbon fractions． Daily averaged mass scattering coefficients $\left(\sigma_{\text {sp }}\right)$ and mass absorption coefficients $\left(\sigma_{\text {ap }}\right)$ were measured with a nephelometer（Aurora 3000，EcoTech Pty Ltd．，Australia）and aethalometer（AE－31，Magee Scientific Company，Berkeley，CA，USA），respectively． This comprehensive data set was used to generate＇localized＇equations similar to coefficients for aerosols in Hong Kong and investigate the role of different aerosol compositions in visibility degradation．

－In addition to determining the bulk OC scattering efficiency，a stepwise separation of organic matter（OM）was performed according to water solubility：dividing water soluble organic carbon（WSOC）and water insoluble organic carbon（WISOC） alternatively according to water affinity：hydrophilic carbon（HPI）and hydrophobic carbon（HPO），the latter being the sum or humic－like substance carbon（HULISc）and WISOC． M_{1} to $\mathrm{M}_{\text {split }}$ as shown in the above schematic are different representations of the OC mass

$$
\begin{gathered}
\boldsymbol{\sigma}_{\mathrm{ext}}=\sum_{i}\left(a_{i} \boldsymbol{m}_{\boldsymbol{i}}\right) \\
\text { Multiple Linear Regression }
\end{gathered}
$$

（MLR）

Mass Scattering Efficiency（MSE） Lack of speciating OC for MSE and MAE estimations revealed the inaccurat
presentation by IMPROVE of OC contributions to both light scattering and absorption．

Summary

This is the first effort to examine the MSEs and MAEs of specific organic carbon components separated by water solubility or water affinity．
Similar MSEs for the inorganic components to those in the original IMPROVE equation MSE for OC derived in the local formulas is significantly larger，explaining the formula．HPI is found to have a stronger ability to attenuate light than HPO on a per carbon mass basis
$O C$ is a key and uncertain component in accurately reconstructing light extinction from chemical composition．Speciating OC by hydrophilicity followed by determining their scattering contributions by OC

The annual average OC concentration was $3.88 \pm 2.82 \mu \mathrm{gC} \mathrm{m} \mathrm{m}^{-3}$ ，with $2.11 \pm 2.01 \mu \mathrm{gC} \mathrm{m}^{-3}$ as WSOC and $1.79 \pm 1.48 \mu \mathrm{gC} \mathrm{m}^{-3}$ as WISCC．HULISc was the dominant
$1.36 \pm 1.39 \mathrm{\mu gCm}^{-3}$ ．HPI fraction constituted $0.87 \pm 0.88 \mu \mathrm{gC} \mathrm{m}$
－
$\mathbf{M}_{\mathrm{w}:}: \boldsymbol{\sigma}_{5.525}=3.0 \mathrm{f}(\mathrm{RH})[\mathrm{AS}]+3.0 \mathrm{f}(\mathrm{RH})[\mathrm{AN}]+1.7 \mathrm{f}(\mathrm{RH})[\mathrm{SS}]+7.2[\mathrm{OC}]+\mathbf{1 . 0}[$ Soill $]+\mathbf{0 . 6}[\mathrm{CM}]$ $\mathbf{M}_{1}: \sigma_{\mathrm{sp}, 525}=3.2 \mathrm{f}(\mathrm{RH})[\mathrm{AS}]+3.7 \mathrm{f}(\mathrm{RH})[\mathrm{AN}]+1.1 \mathrm{f}(\mathrm{RH})[\mathrm{SS}]+13.1[\mathrm{OC}]$
The MSEs of AS and AN（ 3.2 and $3.7 \mathrm{~m}^{2} \mathrm{~g}^{-1}$ ）for M_{1} are comparable to 3.0 in the IMPROVE formula． Higher OC $\left(13.0 \mathrm{~m}^{2} \mathrm{~g}^{-1}\right)$ vs value of $7.2 \mathrm{~m}^{2} \mathrm{~g}^{-1}$ in the IMPROVE formula indicate that the OC compone at our site might have a significantly different composition from the U．S．sites，leading to the higher MSE． $\mathrm{M}_{\text {splitit }}: \boldsymbol{\sigma}_{\mathrm{sp}, \mathbf{2 5}}=$ INORG $_{\text {Mspliti }}+\mathbf{1 2 . 4}[$ WSOC］$+\mathbf{1 4 . 0}$［WISOC］
In Msplit，WSOC（ $12.4 \mathrm{~m}^{2} \mathrm{~g}^{-1}$ ）exhibits a lower MSE than WISOC $\left(14.0 \mathrm{~m}^{2} \mathrm{~g}^{-1}\right)$ ，different from the further split WSOC by hydrophilicity．
$\mathrm{M}_{\text {split：}}: \sigma_{\text {sp，}, 25}=$ INORG $_{\text {Msplit }}+\mathbf{1 6 . 1}[\mathrm{HPI}]+\mathbf{1 1 . 0}[\mathrm{HULISc}]+\mathbf{1 2 . 8}[$ WISOC $]$
$\mathrm{M}_{\text {split }}: \boldsymbol{\sigma}_{\mathrm{sp}, \mathbf{5 2 5}}=$ INORG $_{\text {Msplit }}+\mathbf{1 5 . 5}[\mathrm{HPI}]+\mathbf{1 2 . 2}[\mathrm{HPO}]$
HPI $\left(16.1 \mathrm{~m}^{2} \mathrm{~g}^{-1}\right)$ shows a significantly greater MSE than both HULISc and WISOC．Similar MSEs of
HULISc and WISOC support the regrouping them into HPO Water－solubility of OC is not a suitable

（b） Localized Equations
$y=0.98(\pm .04) \times$

Fig．Measured vs．Reconstructed（a）scattering
coefficient（b）absorption coefficient．The coefficient（b）absorption coefficient．The
IMPROVE comparison（red）utizes IMPROVE comparison（red）utilizes the
whole dataset of measurements while the whole dataset of measurements while th
localized equations（grey）are a result from randomized iterative MLR method．Only one is displayed here．

Acknowledgment

We thank Research Grants Council of Hong Kong（M＿HKUST609／12）for financial support and gratefully acknowledge
Environmental Central Facility at HKUST for providing air पuality data support．

Liniommana References

Li et al．2017，Quantifing the relationship between visisility degradation and PM2．5 constituents ata suburban site in Hong
Kong：Differentiatiting contributions from hydrophilic and hydrophobic organic compounds，Sci．Total Environ $575: 1571-$ 1581 Kifrentiaing contributions from hydrophilic and hydrophobic organic compounds，Sci．Total Environ 575： 1571 Malm et ala，．1994，Examining the Relationship between Atmospheric Aerosols and Light Extinction at Mount－Rainier－
National－Park and North－Cascade－National－Park，Atmos．Environp 28 ： $347-360$
Hand et al．，2002，Aerosol size distributions and visibibily estimates during the Big Bend regional aerosol and visibility National－Park and Norrth－Cascades－National－Park，Attros．Evviron． $28: 377-360$
Hand et al．，2002，Aerosol size distributions and visibility estimates during the Big Bend regional aerosol and visibility
observational（BRAVO）study Atmos．Environ． $36.5043-5055$ ，

Contact

