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Hyper-tidal estuary

» Hyper-tidal: Tidal range
exceeds 6 metres

Bay of Fundy, Canada
Severn Estuary, SW England
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Bay of Fundy, Canada




Hyper-tidal estuary

» Hyper-tidal: Tidal range
exceeds 6 metres '

Bay of Fundy, Canada
Severn Estuary, SW England

» Tidal amplification
Near resonance

Channel convergence

» Surge amplification
Reduced hydraulic drag
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Flood hazard in a hyper-tidal estuary

» Tide — surge concurrence can be catastrophic

Somerset Levels, SW England . e Minas Basin, Bay of Fundy
2]anuary20|4(MetOche 20I4) : SEeeage || 9 May 2016 (CBC,2016)
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Flood hazard in a hyper-tidal estuary

» Tide — surge concurrence can be catastrophic

58 =
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Hinkley Point nuclear reactor, | Ilfracombe, Somerset |8
Somerset (Independent, 2016) { (Telegraph,2014) e b

» Accurate prediction of extreme water level and its timing
is essential for storm hazard mitigation in heavily
populated and industrialized, hyper-tidal estuaries
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Flood hazard in a hyper-tidal estuary

» Combined factors
controlling
magnitude and
variability of
extreme water
levels in a
hypertidal estuary

Event severity
Storm surge
timing and shape
Estuary
morphology
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Coastal flood hazard

» Coastal zones worldwide are
subject to short term, local , -
variations in sea-level, particularly :
communities and industries
developed on hyper-tidal estuaries.

Tidal amplification and extreme
surge development means tide-
surge concurrence can be
catastrophic.

| Humber Estuary, U.K. :

-

Shoalhaven Estuary, Australia

Mersey Estuary, U.K.
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Coastal flood hazard

» Tide-surge concurrence in the
Severn Estuary, SW England,
where tidal range can exceed
2.2 m, can cause very high water
levels.

lifracombe, Devon |+

» Images show the most extreme
event on record, 3 January 2014

Bridgwater, Somerset
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Extreme water level, 3 January 2014

Tide =3 Stormsurge £ 3 Interaction

Tidal elevations for lifracombe
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Aim
» Accurate prediction of extreme water level and its timing
is essential in heavily populated and industrialized
estuaries and tidal rivers
Essential for storm hazard mitigation

» Incorporate spatial and temporal variability of the
combined flood hazard in flood risk assessments

Gloucester, U.K Royal Portbury Dock, U.K.
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Model setup - Delft3D-FLOW
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Model validation — 3 January 2014
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Long term tide gauge record

» Long-term tide gauge records from llfracombe and the Mumbles are used to generate a
series of extreme water level events, of varying severity, to force the model boundary.
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» The most severe event on records, 3 January 2014 is simulated first to ensure that extreme
water levels can be predicted with confidence.
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Timing of surge — 3 January 2014

» A filtered surge component is recombined with the tide in a series of time shifted
configurations. The peak of the surge changes in time relative to the peak of tidal high water
to investigate the influence of the timing of the surge on the extreme water levels.
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Surge characteristic - skewness

» The shape of each filtered storm surge component is classified using skewness, a measure of

asymmetry.
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Gloucester

. Maximum water elevation
Range of maximum water identified every 2 km
Lalong thalweg

elevation along thalweg
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The Mumbles

Range of maximum water

elevation along thalweg

lifracombe

Gloucester

|dentify maximum and
minimum water elevations

4 \{ithin the 5 day maximum

Wataer alavation (m}

@
il

Water elevation (m)
=
&
1

&

po
ca
1

=
)

B
m
1

23 January 2014 {r)\)\
\|
A3

Water elevation (m)

2 - 3 January 2014 {hrs)

Each line represents a change in the timing of the surge relative to tidal high water.
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Range of maximum water elevation along

thalweg
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Influence of event severity on maximum
water elevation along thalweg
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Influence of surge skewness and timing on
maximum water elevation along thalweg
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Influence of channel morphology on
maximum water elevation along thalweg
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Application
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Source-Pathway-Receptor-Consequence

The SPRC model identifies the
combined sources which
contribute to extreme water
levels and increase flood hazard.
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HR Wallingford, 2001
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Source-Pathway-Receptor-Consequence

Storm surge severity, shape
(asymmetry) and timing combine
to increase flood hazard in a
hyper-tidal estuary

» Source

Storm surge

O O

\

HR Wallingford, 2001
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Source-Pathway-Receptor-Consequence

» Pathway

Estuarine

eometr
» Source 5 Y

Storm surge

= fa\Tevets:

The complex geometry of a hyper-tidal estuary
is a ‘source’ or ‘pathway’ in itself, influencing how
floodwaters are conveyed through the system.

HR Wallingford, 2001
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Source-Pathway-Receptor-Consequence

Site specific impacts

» Pathway » Receptor
Estuarine Communities
geometry Industries & infrastructure

» Source

Environment
Storm surge
Estuarine /N
geometry \
\ » Consequence

Material damage

Environmental

degradation
HR Wallingford, 2001
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Summary

» Delft3D-FLOW is used to understand combined mechanisms
controlling extreme water levels in the Severn Estuary.

» When modelling a local area, severity of an event is most important
when assessing flood hazard.

Timing of the surge and skewness of the surge also act in combination
to alter magnitude and variability of extreme water levels.

Morphology results in maximum water levels in certain locations due
to funnelling effect.

Meghna Delta, Bangladesh
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Summary

» Site specific results can address local management needs.

» Methodology can be applied to other hypertidal and
macrotidal estuaries worldwide.

» Lyddon, C.E., Brown, .M., Leonardi, N., Plater; A.J. (2018) Flood hazard
assessment for a hyper-tidal estuary and river as a function of tide — surge
— morphology interaction. Estuaries and Coasts.

Meghna Delta, Bangladesh




Thank you for watching

» Questions!?

» Email: C.E.Lyddon@)liverpool.ac.uk

, @charllyddon
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