

### Motivations

Ice cliffs are **major contributors** to debris-covered glacier mass loss [Buri et al., 2016] and exhibit **highly variable** temporal changes [e.g. Thompson et al., 2016; Watson et al., 2017]. Our goal is to quantify the **total contribution** of ice cliff retreat to the tongue net ablation of Changri Nup glacier and of other debriscovered glaciers of the Everest region between Nov. 2015, Nov. 2016 and Nov. 2017.

### **Study** area

Datasets



**Fig.** Map of the study area. The light blue shapes are the twelve cliffs surveyed with the terrestrial photogrammetry and the orange shapes are all the other cliffs of the tongue. The background image is the Pléiades images of November 2016 (copyright:CNES 2016, Distribution Airbus D&S).

# Can ice cliffs explain the "debris-cover anomaly"? New insights from Changri Nup Glacier, Nepal

Fanny BRUN<sup>1,2</sup>, Patrick WAGNON<sup>1</sup>, Etienne BERTHIER<sup>2</sup>, Philip KRAAIJENBRINK<sup>3</sup>, Walter IMMERZEEL<sup>3</sup>, Joseph SHEA<sup>4,5</sup>, Christian VINCENT<sup>1</sup>, Camille REVERCHON<sup>1</sup>, Dibas SHRESTA<sup>6</sup>, Yves ARNAUD<sup>1</sup>







Fig. 3D displacement of the glacier surface

Using a **flux-gate approach**, it is possible to calculate the mean glaicer tongue emergence velocity (0.33 m/yr). The surface horizontal velocity (up to ~12 m/ yr) was measured with Pléiades images correlation.

Fig. maps of correction is applied

We assumed spatially constant emergence velocity and applied a glacier flow correction to each datapoint of the point clouds.

# **Total contribution of ice-cliff backwasting**



cliffs

We **validated** the volume loss calculation obtained from UAV Volume change from photogrammetry  $[m^3 a^{-1}]$  DEMs with the volume loss calculated from the terrestrial photogrammetry [Brun et al., 2016]. For the period November 2015 to November 2016 and Novemebr 2016 to November 2017, ice cliffs contributed to 23 +/- 5 % of the total tongue net ablation, even though they occupied only 7-8 % of its surface. The mean ablation rate for the ice-cliffs is **3 times higher** than the mean glacier tongue ablation rate. This study provides the first estimate of ice-cliff volume loss at the scale of a glacier tongue based on UAV and Pléiades DEMs (and field monitoring for the ice thickness).

1- Univ. Grenoble Alpes, CNRS, IRD, Grenoble INP, IGE, F-38000 Grenoble, France 2- LEGOS, Université de Toulouse, CNES, CNRS, IRD, UPS, Toulouse, France 3- Departement of Physical Geography, Utrechct University, Utrecht, The Netherland 4- International Center for Integrated Mountain Development, Kathmandu, Nepal 5- Center for hydrology, University of Saskatchewan, Saskatoon, Canada 6- CDHM, Tribhuvan University, Kathmandu



Fig. comparison between volume loss estimated from the terrestrial

photogrammetry and the UAV data for the twelve field surveyed

## Ice cliffs and the "debris-cover anomaly"

Vincent et al. (2016) showed that the ablation was reduced on the debris-covered tongue of Changri Nup Glacier, compared with a neighboring debris-free tongue. We calculated that the cliffs should occupy 75 % of the tongue surface to achieve the same ablation rate than a debris-free tongue, under similar conditions. Similar thinning rates between debris-free and debris-covered tongues are likely due to the fact that the combination of reduced emergence velocities and lower ablation over debris cover tongues coincidently sum up to similar thinning rates as debrisfree glaciers.



### References

Brun, F. et al.: Quantifying volume loss from ice cliffs on debris-covered glaciers using high resolution terrestrial and aerial photogrammetry, J. Glaciol., 62,684–695, 2016.

Buri, P. et al.: A grid-based model of backwasting of supraglacial ice cliffs on debris-covered glaciers, Ann. Glaciol., 57, 199–211, 2016. Thompson, S. et al.: Stagnation and mass loss on a Himalayan debris-covered glacier: processes, patterns and rates, J. Glaciol., 62, 467–485, 2016. Vincent et al.: Reduced melt on debris-covered glaciers: investigations from Changri Nup Glacier, Nepal, The Cryosphere, 10, 1845-1858, 2016. Watson, C.S. et al.: Ice cliff dynamics in the Everest region of the Central Himalaya, Geomorphology, 278, pp.238-251, 2017. Ackowledgments

This work has been supported by the French Service d'Observation GLACIOCLIM, the French National Research Agency (ANR) through ANR-13-SENV-0005-04-PRESHINE, and has been supported by a grant from Labex OSUG@2020 (Investissements d'avenir – ANR10 LABX56). Funding for the UAV survey was generously provided by the United Kingdom Department for International Development (DFID) and by the Ministry of Foreign Affairs, Government of NorwayThis project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 676819). E.B. acknowledges support from the French Space Agency (CNES) and the Programme National de Télédétection Spatiale grant PNTS-2016-01. F.B., P.W., C.V. and Y.A are parts of Labex OSUG@2020 (ANR10 LABX56).

Paper available in T **Cryosphere Discussion** 

