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reservoir size and, then, searches the best sizing under its optimal operations as provided by the parametric
policy previously designed. The proposed approach relies on a novel algorithm, called Planning Fitted Q-
Iteration (pFQI), and is tested on a numerical case study of reservoir sizing, where the water reservoir must
be planned and managed to meet downstream users' water demand at a minimum construction cost of the
reservoir itself. The set of Pareto-efficient reservoir sizes identified via inverse nested approach is compared
with the optimal ones designed through a traditional optimal sizing technique (i.e., Behavior Analysis).
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Figure 3. Zone of operation discretion
(decision space) bounded by the maximum and
minimum feasible release functions for the
operation of two distinct water reservoirs that
differ in size (8, < 0,,)- The release decision
space (grey filled area) enlarges proportionally to
the water reservoir size considered.

Decision variables:

6 = reservoir size [m?>]

U; = reservoir release
decision [m?3/s]

Input data:
q¢+1= inflow time-series
d = downstream irrigation water

demand of 370 m3 /s

State variable:
S; = reservoir storage [m?]

Output variable:
qf. = effective release [m3/s]

a. Inverse nested approach identifies Pareto-efficient water reservoir sizes
that dominate the infrastructure sizes optimized via traditional sizing method
b. Inverse nested approach is computationally more efficient than

traditional nested approach

c. Above a certain size of the learning dataset ¥y, the performance of the
operating policy designed via pFQI in terms of management objective becomes

independent from the number of planning decisions sampled in Fy
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