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[1] ABSTRACT
In the water resources management scientific literature and practice, planning (i.e., reservoir sizing) and
management (i.e., reservoir operation) are usually considered as two distinct problems and are, generally,
coupled by nesting an optimal management problem - designing the optimal operating policy for a given
reservoir size - into a global optimization routine - to explore the space of the sizes. These two problems are
solved iteratively, causing the computational cost to increase with the number of designs considered. This work
contributes an inverse nested approach, which first optimizes a single operating policy parametric in the
reservoir size and, then, searches the best sizing under its optimal operations as provided by the parametric
policy previously designed. The proposed approach relies on a novel algorithm, called Planning Fitted Q-
Iteration (pFQI), and is tested on a numerical case study of reservoir sizing, where the water reservoir must
be planned and managed to meet downstream users' water demand at a minimum construction cost of the
reservoir itself. The set of Pareto-efficient reservoir sizes identified via inverse nested approach is compared
with the optimal ones designed through a traditional optimal sizing technique (i.e., Behavior Analysis).
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[2] PLANNING FITTED Q-ITERATION ALGORITHM

For more details regarding the original FQI algorithm and its further applications, see [1], [2] and [3]. 
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Figure 1. Schematic 
representation of the Planning 
Fitted Q-Iteration algorithm. h is 
the number of iterations (Iter), 
whose maximum number 
(MaxIter) has been set to 40.

Output: approximation of the 
optimal action-value function 
𝑄"#∗(&) generalized over the 
enlarged state-action space 
𝑋×Θ ×𝑈 à approximation of 

the optimal operating policy 𝜋-#∗
that minimizes 𝑄"#∗(&) at each 
time-step t.
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[3] SYNTHETIC WATER RESERVOIR

Figure 3. Zone of operation discretion
(decision space) bounded by the maximum and
minimum feasible release functions for the
operation of two distinct water reservoirs that
differ in size (𝜃min < 𝜃max). The release decision
space (grey filled area) enlarges proportionally to
the water reservoir size considered.

Figure 2. Schematic representation of the system. An inflow
time-series is given as input to a controlled water reservoir,
which has to be planned and managed for ensuring reliable
water supply to downstream users at a minimum construction
cost of the reservoir itself.
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Input data:
𝑞123= inflow time-series
𝑑 = downstream irrigation water 

demand of 370	mA/s

Decision variables:
𝜃 = reservoir size [mA]
𝑢1	= reservoir release 

decision [mA/s]

State variable:
𝑠1 = reservoir storage [mA] 

Output variable:
𝑞123: = effective release [mA/s]

[4] EXPERIMENT SETTING
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Figure 4. Experimental 
setting setup. Panel a): 
Traditional optimization 
approach for pure planning
assuming a pre-defined release 𝜋DE [4]. Panel b and c): Nested and
Inverse Nested optimization approach for reservoir planning and
management, where the optimal management problem is solved by
means of FQI [5] and pFQI respectively. Aim of the experiments:
I. Assess advantages of Inverse Nested w.r.t. traditional

optimization techniques (i.e., Optimal Sizing and Nested)
II. Quantify both sensitivity - in terms of system performance

w.r.t. several training set sizes - and computational advantages
- w.r.t. Nested - of Inverse Nested approach.
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𝜽𝟏∗ 𝜽𝟐∗ Δ𝜽𝟐∗ 𝒏𝜽
𝝅𝑭𝑸𝑰∗ 42.09 143.13 - 1
𝝅𝒑𝑭𝑸𝑰,𝟐	∗

42.25 179.97 22.24% 2

𝝅𝒑𝑭𝑸𝑰,𝟑	∗
41.94 159.56 11.48% 3

𝝅𝒑𝑭𝑸𝑰,𝟏𝟏∗ 42.05 145.20 1.45% 11

CT [min] CT𝜃 [min] 𝒏𝜽
𝝅𝑭𝑸𝑰∗ 43 1763 1

𝝅𝒑𝑭𝑸𝑰,𝟐	∗ 156 156 2

𝝅𝒑𝑭𝑸𝑰,𝟑	∗ 209 209 3

𝝅𝒑𝑭𝑸𝑰,𝟏𝟏∗ 859 859 11

[5] RESULTS
I. Inverse Nested: Advantages w.r.t. traditional optimization techniques (i.e., Optimal Sizing and Nested approach)

Reservoir Construction Costs [10 Mln USD]

Reservoir Design Capacity 𝜃P ∈ 𝜃RST
with 𝑛D = 11 via pFQI
𝜃V∗ with Target Reliability r% via 
traditional sizing 

Figure 5. Pareto front generated via pFQI in the planning (i.e., construction costs [10 Mln $]) vs
management (i.e., downstream water supply squared deficit [m3/sec]2) objective space when 𝑛D= 11
reservoir planning decisions are sampled in the learning dataset ℱD of the algorithm.

Table 1. Performance of the optimal operating policies
𝜋XYS∗ and 𝜋ZXYS,[\

∗ (rows) computed via FQI and pFQI
respectively in terms of water supply deficit [m3/sec]2 when
evaluated over two given planning decisions, i.e. 𝜃3∗ and 𝜃]∗.
The former reservoir size belongs to the learning dataset ℱD
of the pFQI algorithm, the latter is not experienced by the
algorithm during its policy design phase in order to test its
interpolation ability over the planning decision space.

Table 2. CT [min] is the Computational Time required
by both FQI and pFQI algorithm to find the optimal
operating policy and associated optimal planning decision
that identifies one non-dominated solution (i.e., blue
point) in Figure 5. CT𝜃 [min] is the total Computational
Time required to design the entire Pareto front.

II. Inverse Nested: Sensitivity in terms of system performance w.r.t. several 𝓕𝜽 sizes and computational advantages w.r.t. Nested

Figure 6. 
Pareto fronts 
designed via pFQI
in the planning vs 
management 
objective space 
when 𝑛D= 2, 3, 11 
reservoir planning 
decisions are 
sampled in ℱD.

Reservoir Design Capacity 𝜃P ∈ 𝜃RST
Reservoir Design Capacity sampled in ℱD
𝑛D = 2 𝑛D = 3 𝑛D = 11

Downstream 
Water 
Supply Deficit
[m3/s]2

[6] HIGHLIGHTS
a. Inverse nested approach identifies Pareto-efficient water reservoir sizes

that dominate the infrastructure sizes optimized via traditional sizing method
b. Inverse nested approach is computationally more efficient than

traditional nested approach
c. Above a certain size of the learning dataset ℱD, the performance of the

operating policy designed via pFQI in terms of management objective becomes
independent from the number of planning decisions sampled in ℱD


