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Gradient Boosting  
Ensemble machine learning algorithm for classification and 
regression problems, which produces a hierarchy of weak 
prediction models iteratively. In a regression problem, every 
new model is trained to fit the residual between the actual 
target variable and the prediction value given by the previous 
model. It requires a differentiable loss function. 

Random Forest
Ensemble machine learning algorithm for classification and 
regression problems. It builds an ensemble of decision tree 
models, training each of them using a subset of input 
features obtained through feature bagging out of the training 
set. In a regression problem, the final model is the average of 
the ensemble models. 

Abstract
The Kp index is a global measure of geomagnetic activity and it represents 
short-term magnetic variations driven by space weather. The Kp index is used 
as an input to various thermosphere and radiation belt models, and it is 
therefore important to predict it accurately. In this study, we systematically test 
how different machine learning techniques perform on the task of nowcasting 
and forecasting Kp for 3, 6, and 9 hours prediction horizons. Additionally, we 
investigate two feature selection schemes based on Mutual Information and 
Random Forests. Finally, we evaluate and report the optimal combinations of 
input parameters and the best performing machine learning model.

• We have explored how three different algorithms (Neural Networks, Gradient 
Boosting, Linear Regression) perform on the task of predicting the Kp index for 5 
different prediction horizons (up to 9 hours), and assessed the performance of the 
two feature selection methods based on Mutual Information and Random Forests. 

• Neural networks outperformed other models. Models based on the features 
selected by Random Forest perform similarly to the models based on features 
selected using the domain knowledge, while the input space is significantly 
reduced using the RF feature selection (models can be trained faster).
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Performance of different ML methods Resulting models

Conclusions

Correlation between the 
observed Kp and 
predicted values by the 
neural network model for 
all data (combined 
training, validation, and 
test sets). 

Examples of Kp prediction for different horizons.

Feedforward Neural Network
A computational model that is very powerful for finding 
multivariate nonlinear relationships between input and 
output data. It has an input, output and a number or hidden 
layers. Each node in the layer is a Neuron, which can be 
thought of as the basic processing unit of a Neural Network. 
The information in the FNN moves only forward, from input 
to output (there are no feedback connections or loops). 

Linear Regression
A linear approach for modelling the relationship between a 
scalar dependent variable and one or more explanatory 
variables (or independent variables).  

Comparison of Mutual Information and Random Forests for feature selection
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Table 2. Features selected by MI 
and RF (in the order of importance).
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Artificial Neuron

Mutual Information
The mutual information (MI) of two 
random variables is a measure of the 
mutual dependence between them. 
More specifically, it quantifies the 
"amount of information" (in units of bits) 
obtained about one random variable, 
through the other random variable. The 
concept of mutual information is 
intricately linked to that of entropy of a 
random variable defining the "amount 
of information" held in a random 
variable.

Table 1. Optimal inputs to the models derived from the CV procedure.

T = 2π * (UT hour) / 24 

D = 2π * (UT DoY) / 365,  

DoY = day of year

Training setup
• 5-fold cross-validation (CV) with 10 

repeats. 
• Data are first split into 35-day 

chunks sequential in time. 
• Separately from that, test set is left 

aside comprising 10%.

Time,  
hours

0           3           6          9 …

“past” or “back”

Existing models performance
Model (h=0, past) RMSE CC
Wintoft et al., 2017 0.55 0.92
Wing et al., 2005 - 0.92


