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Assessing the magnitude and
return period of large earthquakes
8 ' along the Himalayan arc is both a
major societal concern and a sci-
entific challenge. Ample observa-
tions document the bimodal be-
havior of large Himalayan earth-
quakes: partial ruptures (Mw 7+)
tend to cluster in the downdip
part of the Main Himalayan
Thrust (MHT) fault, whereas in-
frequent mega-earthquakes (Mw
8+) propagate up to the surface.

Tibetan plateau

a5e
Longitude (°E)
The 2015 Gorkha earthquake was well recorded by geodetic and seismic instruments, enhancing our understanding of earth-
quake physics and induced ground shaking. Two of the main remaining questions, very relevant for the hundreds of millions
of people living in the Ganges Plain, are:
1) Why did the Gorkha earthquake not rupture the frontal part of the Main Himalayan Thrust?
2) How likely is it to rupture in future earthquakes?
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The reference geometry of the MHT,
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We also perform numerical experiments considering an alternative, smoother fault model (Model DF), from Duputel et al.

(2016) 9. To test the sensitivity of the model to the fault geometry, we consider a simple planar fault as well (Model PF).

The reference model EF produces about 19-20 mm/yr of

across the Hi a value consistent with
the long term geological rate. Most importantly, the model fits the geodetic measurements of interseismic strain remarkably
well. The mid-crustal ramp operates as a geometric asperity during interseismic periods where elastic strain build up
and accounts for as much as two thirds of the convergence rate.

| Horizontal GPS, from Ader et al,, 2012

M |
| Vertical spirit-evelling, from Jackson and Bilham, 1994 lodel prediction

= N
o

Depth (km)  Velocity (mm yr‘1)

PDF (%)
N
=}
T

-20 0 20 40 60 80 100 120 140 160 180
Distance to the Main Frontal Thrust (km)

2

Spatiotemporal evolution of slip on the Main Himalayan Thrust fault for the reference model EF. Red lines show slip
during the simulated earthquakes. Note that hypocenters (black circles) are typically located in the lower edge of the flat
segment, just before the mid-crustal ramp.
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Although the whole seismogenic zone is inter-
seismically nearly fully locked, most of the

i ear and propa-
gate only in the lower edge of the locked
Main Himalayan Thrust.
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It appears that the static stress change due to
partial ruptures is the major factor introducing
irregularity in the seismic cycle. This is the main
reason that could explain why the model
obeys neither the slip- nor time-predictable
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— Stress (0,) To understand the physical mechanism behind this behaviour, we investigate the spa-
— Strength . . . .
— s‘ © Q:h N tiotemporal evolution of the stress vs. yield and
trength excess
QO Hypocentre slip on the Main Himalayan Thrust fault throughout the events E9 and E18.
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The model produces distinctly different rupture patterns within a narrow range of frictional parameters. An increase of

both the static fault friction and friction drop leads to an increase of (1) the number of events per cycle, (2) the aver-

age recurrence interval between the largest events, and (3) the median S values.
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excess in the

Model EF and model DF show that the region of the fault is notably high. This be-
haviour arises because the steeper the fault dips in the updip region of the megathrust, the higher would be the pres-
sure-dependent fault strength: 0yicid = C+ pe I P

— Average yield strength
F — Average stress 3
1 Average strength excess

— Average yield strength
f — Average stress b
= Average strength excess

a)
IN]
S

— Average yield strength
F — Average stress 4
1 Average strength excess

N OB o ® O
S 5 5 & &

0 L L L L s L L L L . . L
0 20 40 60 80 100 0 20 40 60 80 100 O 20 40 60 80 100
Distance to the Main Frontal Thrust (km)  Distance to the Main Frontal Thrust (km)  Distance to the Main Frontal Thrust (km)

Frictional properties and pl 'y of the Main Hii Thrust fault control a variety of observa-
tions of the MHT behaviour, such as the along-dip stress the relative of along-dip varia-
tions of seismic ruptures and the variable recurrence time of large (M7+) and great (M8+) earthquakes.

Average stress vs. strength (MPa)

Based on our numerical experiments, we that large k-like ear

reservoir of mid

on the MHT may incorpo-

rate and release a
partial ruptures.

stress inherited from former pulse-like

Because a heterogeneous along-dip stress condition is likely to prevail throughout the Himalayan arc, our re-
sults may provide an answer to the long-standing difficulties in explaining the source of the stored stresses
needed to drive large (>8-10 m) paleoseismic surface ruptures recorded on the Main Frontal Thrust.
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