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Fig. 2. Mathematical model of the oscillations in geomaterials 
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Conclusions 

 The basic element in the dynamics of  fragmented geomaterials 

with mutual rotations is a linear oscillator with energy loss at 

neutral points (Fig. 2) 

 Among six independent parameters describing the behaviour of 

an oscillator with impact damping, there are four three, i.e. φ0, 

Ω, τ, and α, which have an influence on the character of steady-

state oscillations 

 The solution can be represented as a piecewise function con-

sisting of linear solutions between time intervals Ti 

 Asymmetric vibrations in the system are a transitional  

configuration to chaotic behaviour (Fig. 4-5) 

 Odd super-harmonics, i.e. Ω = 3, 5, 7, with zero initial phase 

demonstrate non-dissipative vibrations regardless of α        

(Fig. 6-7) 

 For Ω = 3, and zero coefficient of restitution α, if φ0 can be 

represented by 2(-N)πZ where N and Z are natural and integer 

numbers, respectively, the vibrations become non-dissipative 

after some stabilisation time which depends on the two num-

bers (Fig. 8) 

Fig. 1. a) Blocks of fragmented geomaterials,   

b) Rotational oscillations of the blocks (fragments) 

Fragmented geomaterials consist of blocks (fragments) that 

can move and rotate independent of each other. In some circum-

stances the relative movement of fragments is caused by external 

vibrations (e.g., waves) leading to fragment oscillation . Due to 

their limited movement, the neighbouring fragments can collide 

dissipating energy. When the fragments collide in the process of 

mutual rotation, the loss of energy falls to the neutral states, while 

the rest of the trajectory of oscillations can remain elastic.  

In this study, forced oscillations of a pair of neighbouring 

fragments are analysed as a basic element of the process of frag-

ment movement with energy dissipation on mutual collisions. The 

mathematical model of the interaction is represented as an un-

damped oscillator coupled with an additional condition: each time 

the system travels through the neutral points of the mass trajecto-

ry, the velocity is reduced by a coefficient of restitution (COR) 

smaller than one. As a result, the system transforms to piecewise 

linear with the non-linearity concentrated at the neutral points. 

Numerical modelling shows that the behaviour of the model 

is influenced by three main parameters: the COR, the excitation 

frequency to natural frequency ratio, and the initial phase of the 

excitation. It was observed that the system can have periodic, 

asymmetric, and erratic non-periodic (chaotic) behaviour and en-

ergy dissipation does not always reduce with the decrease of 

COR. Also, it is found that, for odd super-harmonics, non-

dissipative vibrations can occur either from the very beginning or 

after some stabilisation time. 

Abstract 

Fig. 7. Solution of Eq. (4) with Ω = 3, α = 0.2 and a) φ = π/4, b) φ = 23π/90 

Fig. 4. Solution of Eq. (4) with Ω = 3.2, φ = 0 and different α: a) α = 0.8, b) α = 0.3, c) α = 0.1, and d) α = 0.0 
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Fig. 6. Solution of Eq. (4) with Ω = 5, α = 0.1 and a) φ = 0, b) φ = π/90 
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Simulations 

Impact,  

restitution coefficient α a)  b)  

A system describing the oscillations of two blocks: 
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the system (1) can be rewritten in a dimensionless form: 
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The solution for other values of α is identical to Eq. (3) yet 

only for the time interval prior to the first intersection with the 

neutral axes T1. After finding numerically T1, we can solve the 

same Eq. (3) yet with different parameters φ0, τ, and V0 found 

from the solution of Eq. (3) at T1. 

The last procedure can be performed for all next parts of the 

solutions (Fig. 3) via the recurrent formula: 
It can be seen that there are six independent parameters de-

scribing the behaviour of the system: F, Ω, φ0, τ, X0, and V0; 

moreover, the COR α changes the first derivative of the function 

after “impacts” leading to seven parameters overall. However, X0 

and V0 characterise only the initial energy of the system and, sim-

ilarly to force viscous damping vibrations, can be eliminated; the 

magnitude of the periodic force, F, plays a role of scalar multipli-

er and does not affect the pattern of vibrations. Thus, Eq. (3) can 

be rewritten as following: 
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The solution of the system (2) without energy loss, i.e. α = 1: 

Algorithm of finding the solution 

Fig. 5. Solution of Eq. (4) with α = 0.1, φ = 0 and different Ω: a) Ω = 3.2, b) Ω = 3.2, c) Ω = 3.9, and d) Ω = 3.2 

(b)  (d)  (a)  (c)  

Fig. 8. Solution of Eq. (4) with α = 0.0, Ω = 3 and different φ: a) φ = π/8, b) φ = π/4, c) φ = π/2, and d) φ = 5π/8 

(b)  (d)  (a)  (c)  

Using Eq. (5) one can prove that if Ω can be represented by 

(2n+1) where n is a natural number, and φ0 = 0, then the vibrations 

are periodic and without energy dissipation. (Fig. 6-7). 

Also, for Ω = 3 and α = 0, there are a number of initial phases 

determined by the formula φ0 = 2-NπZ (N and Z are natural and in-

teger numbers, respectively) leading to undamped vibrations after 

some stabilisation time. (Fig. 8) The number of impacts to reach 

vibrations without energy loss cannot be greater than N. 
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Fig. 3. Representing solution of Eq. (2) as a piecewise function 
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The solution of the system (2) in a graphical form for different 

values of the major parameters are presented in Fig. 4-8. 


