Abstract

Fragmented geomaterials consist of blocks (fragments) that an move and rotate independent of each other. In some circumsances the relative movement of fragments is caused by external ibrations (e.g., waves) leading to fragment oscillation. Due to heir limited movement, the neighbouring fragments can collide
dissipating energy. When the fragments collide in the process of nutual rotation, the loss of energy falls to the neutral states, while the rest of the trajectory of oscillations can remain elastic.
In this study, forced oscillations of a pair of neighbouring fragments are analysed as a basic element of the process of fragment movement with energy dissipation on mutual collisions. The nathematical model of the interaction is represented as an unhe system travels through the neutral points of the mass trajectory, the velocity is reduced by a coefficient of restitution (COR) smaller than one. As a result, the system transforms to piecewis linear with the non-linearity concentrated at the neutral points.
Numerical modelling shows that the behaviour of the model is influenced by three main parameters: the COR, the excitation frequency to natural frequency ratio, and the initial phase of the
excitation. It was observed that the system can have periodic, asymmetric, and erratic non-periodic (chaotic) behaviour and en ergy dissipation does not always reduce with the decrease of COR. Also, it is found that, for odd super-harmonics, non dissipative vibrations can occur either from the very beginning or after some stabilisation time

Mathematical model

Fig. 1. a) Blocks of fragmented geomaterials, Rotational oscillations of the blocks (fragments) Impulsive loss of energy at $x=0$

Fig. 2. Mathematical model of the oscillations in geomaterial A system describing the oscillations of two blocks: $\ddot{x}+\omega_{0}^{2} x=f \cdot \sin \left(\omega_{1} t+\varphi_{0}\right) \quad x(0)=0, \quad v(0)=\dot{x}(0)=v_{0}$ $v\left(\mathrm{~T}_{i}+0\right)=\alpha \cdot v\left(\mathrm{~T}_{i}-0\right)$ at $x\left(\mathrm{~T}_{i}\right)=0$
Defining the following dimensionless groups
$X=\frac{x}{l}, \quad \tau=\omega_{0} t, \quad \Omega=\frac{\omega_{1}}{\omega_{0}}, \quad F=\frac{f}{l \omega_{0}^{2}}, \quad V_{0}=\frac{v_{0}}{l \omega_{0}}$
the system (1) can be rewritten in a dimensionless form: $X^{\prime \prime}+X=F \cdot \sin \left(\Omega \tau+\varphi_{0}\right) \quad X(0)=0, \quad V(0)=X^{\prime}(0)=V_{0}$ $V\left(T_{i}+0\right)=\alpha \cdot V\left(T_{i}-0\right)$ at $\quad X\left(T_{i}\right)=0$

The solution of the system (2) without energy loss, i.e. $\alpha=1$
$X(\tau)=-\frac{F}{\left(1-\Omega^{2}\right)}\left(\Omega \cos \left(\varphi_{0}\right) \sin (\tau)+\sin \left(\varphi_{0}\right) \cos (\tau)\right)+$
$+\frac{F}{\left(1-\Omega^{2}\right)} \sin \left(\Omega \tau+\varphi_{0}\right)+X_{0} \cos (\tau)+V_{0} \sin (\tau)$

$$
\begin{align*}
& \left(1-\Omega^{2}\right) \tag{3}\\
& \text { It can be seen that there are six independent parameters de }
\end{align*}
$$ scribing the behaviour of the system: $F, \Omega, \varphi_{0}, \tau, X_{0}$, and V_{0} moreover, the COR α changes the first derivative of the function after "impacts" eading to seven parameters overall. However, X

and V_{0} characterise only the initial energy of the system and, sim ilarly to force viscous damping vibrations, can be eliminated; th magnitude of the periodic force, F, plays a role of scalar multiplier and does not affect the pattern of vibrations. Thus, Eq. (3) can be rewritten as following
$X(\tau)=\frac{\sin \left(\Omega \tau+\varphi_{0}\right)-\Omega \cos \left(\varphi_{0}\right) \sin (\tau)-\sin \left(\varphi_{0}\right) \cos (\tau)}{1-\Omega^{2}}(4$

Algorithm of finding the solution

The solution for other values of α is identical to Eq. (3) yet only for the time interval prior to the first intersection with the neutral axes T_{1}. After finding numerically T_{1}, we can solve the ame Eq. (3) yet with different parameters φ_{0}, τ, and V_{0} foun
the solution of Eq. (3) at T_{1}.
The last procedure can be performed for all next parts of the Thions (Fig. 3) via the recurrent formula
$X_{(i)}\left(\tau_{(i)}\right)=-\frac{\left(\Omega \cos \left(\varphi_{0(i)}\right) \sin \left(\tau_{(i)}\right)+\sin \left(\varphi_{0(i)}\right) \cos \left(\tau_{(i)}\right)\right)}{\left(1-\Omega^{2}\right)}+$

$$
+\frac{\sin \left(\Omega \tau_{(i)}+\varphi_{0(i)}\right)}{\left(1-\Omega^{2}\right)}+V_{0(i)} \sin (\tau)_{(i)}
$$

$V_{0(1)}=0, \quad \varphi_{0(1)}=\varphi_{0}, \quad \tau_{(i+1)}=\tau_{(i)}+T_{i}$
$V_{0(i+1)}=\alpha V_{0(i)}\left(T_{i}\right), \quad \varphi_{0(i+1)}=\varphi_{0}+\Omega T_{i}$
The solution of the system (2) in a graphical form for differen values of the major parameters are presented in Fig. 4-8.

Fig. 3. Representing solution of Eq. (2) as a piecewise function Using Eq. (5) one can prove that if Ω can be represented by $(2 n+1)$ where n is a natural number, and $\varphi_{0}=0$, then the vibrations are periodic and without energy dissipation. (Fig. 6-7)

Also, for $\Omega=3$ and $\alpha=0$, there are a number of initial phases determined by the formula $\varphi_{0}=2^{-N} \pi Z$ (N and Z are natural and integer numbers, respectively) leading to undamped vibrations after some stabilisation time. (Fig. 8) The number of impacts to reach vibrations without energy loss cannot be greater than N

Conclusions

The basic element in the dynamics of fragmented geomaterial with mutual rotations is a linear oscillator with energy loss at neutral points (Fig. 2)

Among six independent parameters describing the behaviour of n oscillator with impact damping, there are four three, i.e. φ_{0} whic ate oscillations

The solution can be represented as a piecewise function consisting of linear solutions between time intervals T_{i}
Asymmetric vibrations in the system are a transitional configuration to chaotic behaviour (Fig. 4-5)

Odd super-harmonics, i.e. $\Omega=3,5,7$, with zero initial phase demonstrate non-dissipative vibrations regardless of Fig. 6-7
, $=3$, and zero coefficient of restitution α, if φ_{0} can be represented by $2^{(-N)} \pi Z$ where N and Z are natural and intege numbers, respectively, the vibrations become non-dissipative after some st
bers (Fig. 8)

Acknowledgements

The authors would like to thank The University of Western Australia and Australian Government for providing re sources and favorable environment.

This research is supported by the Research Training Program (RTP) Scholarship and the Convocation Postgraduate Research Travel Award.

