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How do nested particle filters work?
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] " The nested structure (— The nner particle filters
* separates inference for Each particle provide likelihoods for
states and parameters. assimmilates data. the outer particle filter.
individual
performance
varies

Inspiration *ox

Proposed approach

Employ particle filters, a general solution
to Bayesian Inference requiring fewer
assumptions than the EnKF:

Inner particle filter:
Data assimilation for
model states

Introduction State of the Art: EnKF

Motivation:
e groundwater modelling Is notoriously
limited by availabllity of geological data

The ensemble Kalman filter
(EnKF) solves Bayesian inference in
a special case. For calibration:

Issue 1: .
. . . Real-time
Curse of dimensionality data

—> stochastic significance questionable
. Compare ’

Surviving Poor particles

particles are are discarded,
mutated, creating good particles are
new diversity duplicated

Hydrogeology: assumptions not met
-> stochastic significance lost

Classic approach:
e Inverse parameter estimation with
batch of available data

Required assumptions: ntroducing an artificial
parameter dynamic can

oreserve geology

Calibration is Gaussian
-> too simple to preserve geology

e (Gaussian distributions
e linear model dynamic »
e states and parameters

are jointly Gaussian Issue 3: Issue persists

Joint Gaussianity Artificial parameter dynamic (kernel)
- parameters implictly time-varying -> parameters explicitly time-varying

-

Assumption of time-varying
parameters does not entalil
major errors In dissipative
settings, which tend to
‘forget’ their history.

Problem:
e computational effort: with new data,
lengthy recalibration is required

Alternative:
e sequential (real-time) calibration

Outer particle filter:
Auto-calibration of
model parameters

Model setup Artificial parameter dynamic

This is where the
parameter dynamic comes in.

Key ideas: Hyperspace: number of corners

+ hyper(parameter)space: @) ez () ez (o)

describe desired geology via
nyperparameters

Synthetic reality:

2-D aquifer

1 m fixed head western boundary
sinusoidal recharge

16 observation wells (obs. error 2 cm)
2850 hexagonal cells

implemented in MODFLOW USG
geology: highly conductive meander
facies type known at three wells
boundary conditions assumed known

 hyperspace can be projected into

narameter space Results from different hyperparameter kernels
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e applying dynamic in hyperspace
preserves geological patterns

o curse of dimensionality alleviated
In lower-dimensional hyperspace

. Intractable A Intractable .

Realspace: desired dynamic

{ observation well ® observation well & core ® Dirichlet BC

§ Discussion Node-based Lens-based Meander-based
§ « ~50 nodes o ~12 elliptic lenses e 0One meander
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« model self-diagnosis: Investigate parameter

y coordinate in [m]
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