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§I-1 Highlights

I A direct numerical method that is
I computationally cheap
I with built-in error estimate
I of arbitrary accuracy
I easily parallelizeable for many values of wave vector k .

I Applicable to currents of arbitrary depth dependence

I (Arguably) Preferable to existing numerical methods [1,2] for practical purposes

I Computational cost in the same magnitude as that of existing analytical
approximations (c.f. e.g. [3,4])

I Full flow field solution with little extra cost

§II Direct integration method
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The geometry: a plane wave of wave vector k travels atop a horizontal background current of
arbitrary depth dependence.

We consider a plane wave with wave vector k = [kx, ky ] propagating atop a
horizontal current U(z) whose direction and magnitude may vary with depth,
running over a flat sea bed of depth h. We seek solutions of a linear
wave-current system described by the boundary value problem

w̄ ′′(z)− k2w̄(z) =
k ·U′′(z)

k ·U(z)− kc
w̄(z); (1a)

(k ·U(0)− kc)2w̄ ′(0)−[k ·U′(0)(k ·U(0)− kc) + gk2 +
σk4

ρ
]w̄(0) = 0; (1b)

w̄(0) = 1; (1c)

w̄(−h) = 0, (1d)

in which the prime is the derivative with respect to z , c is the phase velocity,

w̄ =
w(k, z)

w(k, 0)
(where w(k, z) is amplitude of the vertical velocity due to wave

perturbations) is the unity vertical velocity, g is the gravitational acceleration, ρ
is the fluid density, and σ is the surface tension coefficient.
Based on Eqs.(1), dispersion relation is obtained

DR(k, c̃(k)) ≡[1 + Ig(c̃))]c̃2 + c̃k ·U′0 tanh kh/k2 − (g/k + σk/ρ) tanh kh = 0
(2)

in which c̃ = c − k ·U(0)

k
and Ig(c̃) =

0∫
−h

dz
k ·U′′w̄(k, z) sinh k(z + h)

k(k ·U− k ·U(0)− kc̃) cosh kh
.

The direct integration method uses an iterative approach to solve the linear
wave-current system described by the coupled equations (1) and (2) and comes
with a built-in error estimate that is introduced in §III.

§III Error estimates

An estimate of the relative error is obtained by a Taylor expansion of (2) about
c̃ = c̃≈ where c̃≈ denotes an approximation of the exact solution of (2). We
obtain

R(c̃≈) ≡
∣∣∣∣∆c

c̃e

∣∣∣∣ ≈
∣∣∣∣∣ DR(c̃≈)

c̃≈
∂DR

∂c̃ (c̃≈)

∣∣∣∣∣ . (3)

§IV Full flow field solution

Once c and w̄ are calculated, information of full flow field – that includes
amplitude of the dynamic pressure p(k, z)/ρ and amplitudes of the horizontal
velocities u(k, z) and v(k, z) – is readily obtained by

ik2p̄/ρ = (k ·U− kc)w̄ ′ − k ·U′w̄ , (4a)

k2(kc − k ·U)ū = ikx[k ·U′w̄ − (k ·U− kc)w̄ ′]− ik2U ′xw̄ , (4b)

k2(kc − k ·U)v̄ = iky [k ·U′w̄ − (k ·U− kc)w̄ ′]− ik2U ′yw̄ , (4c)

in which [ū, v̄ , p̄](k, z) = [u, v , p/ρ]/w(k, 0).

§ V Convergence and computational time
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Demonstration of convergence and calculation time

§VI Comparisons with other approaches

A. Compared to the piecewise-linear approximation [1], the DIM method has
several advantages.

I simpler implementation;

I no spurious artefacts of the abrupt change of vorticity at layer interfaces;

I DIM can handle cases where U(z) varies direction with depth;

I Built-in error estimates.

B. Compared to Dong & Kirby’s method [2], the DIM method allows

I simpler computations: no nonlinearities introduced;

I parallelizeable computations in an array of wavenumbers for a chosen set of
discrete values of z varying from −h to 0;

I calculation of full flow field.

C. Compared to analytical approximations [3,4], the DIM method allows

I same accuracy ( 2-3%) that incurs similar computational cost

I arbitrary accuracy;

I built-in error estimates with little extra cost.

§VII Extreme current profiles
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(b): in the presence of Ue1 (d): in the presence of Ue2

Comparisons among different approximate solutions and the DIM.

§VIII Transient full flow field generated by an initial pressure impulse

Surface elevation, velocity and pressure field in the presence and absence of a shear current at different times.
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