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slabs that in turn interact with the primordial domains.

These dicrepancies are incoorporated in a recently proposed convective regimel'”; e Stronger slabs enhance primordial fragmentation but reduce mixing effiency of

e Large, intrinsically viscous domains persist in the primordial with pyrolitic material.

mid-mantle, with whole-mantle circulation being

e In addition, greater yield strengths promote a thicker basaltic crust at the surface
accommodated around them

and accumulation of basaltic material atop the CMB, underlying the neutrally

* Domains believed to be enriched in the strong buoyant bridgemanitic-enriched domains in the mid-mantle.

lower-mantle mineral bridgmanite (Fe,Mg)SIO,,
resulting from a fractional crystallizing magma ocean

This regime has succesfully been reproduced in
2D spherical annulus geometry models using com-

Outlook

Cartoon of the BEAMS hypothesist®. The strong -
BEAMS are shown in light grey, harzburgite rocks ~ position-dependent rheology!™, but lacks a thorough

in blue, basaltic rocks in dark green and an LLSVP  agsessment of tectonic/rheological parameters.
Is shown in yellow.

Future work will involve:
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® Expanding the rheological parameter space by including the effect of T- and P-dependence of
viscosity (via the Arrhenius law), and assessing which models are most Earth-like

e Integrating our numerical results with geophysical observations: (suggestions welcome)

What are the effects of rheological and tectonic parameters on the style

of mantle mixing and heterogeneity preservation? How would our geodynamic models translate to seismic tomography?

Thermochemical mantle convection models
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