

Microplastic

Goal: Representative MP analysis

Evaluating results:

- Morphological and chemical composition for each particle
- Combine information on particle composition and size distribution
- Extrapolate to entire population N
- Replace estimated error with actual error

Size distribution for particles from a PET reference sample correlated with the identified compound for each size class. Spectra illustrate the unambiguous identification by Raman microspectroscopy

E-Mail: elisabeth.esch@tum.de Tel.: +49 (0) 89 2180-78238 Fax: + 49 (0) 89 2180-78255 Marchioninistrasse 17, 81377 Munich, Germany http://www.hydrochemistry.tum.de

Raman microspectroscopy as a tool for microplastic particle analysis Elisabeth von der Esch, Philipp M. Anger, Thomas Baumann, Reinhard Niessner, Martin Elsner, and Natalia P. Ivleva

Why Raman microspectroscopy ? Chemical information through inelastic light scattering resulting in a "fingerprint" spectrum. Single particle analysis in the μm range Morphological characterization of particles

 \rightarrow Particle size distribution and compound abundance

Challenges:

Automated particle analysis 1. Sample on filter surface 2. Locate particles 3. Select particles

- 4. Raman spectroscopy
- 5. Evaluate

Left comparison of acquisition time vs. signal quality (633 nm laser, 4 mW mit 50× magnification (NA = 0.5)). Right comparison of current measurement protocols to estimated sample sizes n for 5%, 0.5 and 0.05% microplastic content

Acknowledgements:

The authors thank the Bavarian Research Foundation (Bayrische Forschungsstiftung, BFS) for funding of the MiPAq project.

Particle detection and morphological characterization

• Different sizes $1 \mu m - 5 mm$ require different objectives and focusing • Particles and fibers require different recognition algorithms

Particle selection for Raman measurement

Calculate the minimum required objects *n* for a representative sub set based on *N*

Variable Confidence Total number Estimated N Margin of e Sample size

> e.g. *N* = *n* ≥

Random sampling over the whole filter corresponds to a virtual mixing and lowers the segregation error.

More is not always better, there is a limit where more measurements do not significantly improve the measurement error

Longer measurement = better spectra = more information? balancing individual and overall measurement time

Speed vs. number of particles

Study	Measurement time per particle	Number of particles for each measurement session			
		5 h	15 h	24 h	48 h
Imhof et al. 2016	500 s	36	108	173	346
Käppler et al. 2017	10 s	1 800	5 400	8 6 4 0	17 280
Schymanski et al. 2018 Imhof et al. 2016	5 s	3 600	10 800	17 280	34 560
Ossmann et al. 2018	2 s	9 000	27 000	43 200	86 400
Sujathan et al. 2017	0.5 s	36 000	108 000	172 800	245 600

Raman shift / cm⁻

References:

P. M. Anger¹ & E. von der Esch¹, T. Baumann, M. Elsner, R. Niessner & N. P. Ivleva, Trends in Analytical Chemistry 2018, 109 214-226, ¹ shared first authorship

• Find appropriate settings for image capture • Localize all objects (particles and fibers) • 16 000 μ m x 16 000 μ m image = entire filter • Determine total number of fragments N and measurement coordinates

ire			
Inherent to research question			

