

First measurement of a flow mechanism responsible for enhanced erosion in channel-lobe-transition zones

PICO 1.1

Florian Pohl, Joris Eggenhuisen, Mike Tilston, Matthieu Cartigny

First measurement of a flow mechanism responsible for enhanced erosion in channel-lobe-transition zones

PICO 1.1

Florian Pohl, Joris Eggenhuisen, Mike Tilston, Matthieu Cartigny

First measurement of a flow mechanism responsible for

enhanced erosion in channel-lobe-transition zones

Florian Pohl, Joris Eggenhuisen, Mike Tilston, Matthieu Cartigny

Velocity structure

PICO 1.1

First measurement of a flow mechanism responsible for

enhanced erosion in channel-lobe-transition zones

Florian Pohl, Joris Eggenhuisen, Mike Tilston, Matthieu Cartigny

Flow relaxation

Pohl et al., (under review), Nature Com.

PICO 1.1

First measurement of a flow mechanism responsible for

enhanced erosion in channel-lobe-transition zones

Florian Pohl, Joris Eggenhuisen, Mike Tilston, Matthieu Cartigny

Introduction: study motivation and rationale

CLTZ's: Poorly understood region connecting well defined channels and lobes (Mutti and Normark, 1987)

Morphologic characteristics:

massive scours and sediment bypass

Flow transformation mechanisms:

1. Break of slope (BOS)

2. Loss of lateral confinement (LLC)

Introduction: study motivation and rationale

➡ Flow Relaxation

Hughes Clarke et al. 2012

Experimental setup

Run 1: Continuous confinement

Results: erosional & depositional trends

Results: longitudinal velocity trends

Results: model vs. depth-averaged flow properties

 Δ in flow thickness too rapid to be explained by particle settling. Depth-averaged trends fit the model, but NOT the erosional/depositional patterns.

Results: loss of confinement and velocity maxima

Results: loss of confinement and bed shear stress

Discussion: flow relaxation model

Natural analogue

Final Remarks: flow relaxation in CLTZ's

Future Research: rate of confinement loss effects

