

Universität für Bodenkultur Wien University of Natural Resources and Applied Life Sciences, Vienna

Large-scale evidence from the Eastern Alps

Julius Sebald¹, Cornelius Senf¹, Micha Heiser², Christian Scheidl², Dirk Pflugmacher³ & Rupert Seidl¹ ¹Institute for Silviculture | Department of Forest and Soil Sciences | University of Natural Resources and Life Sciences Vienna (BOKU) | Austria ²Institute of Mountain Risk Engineering | Department of Civil Engineering and Natural Hazards | University of Natural Resources and Life Sciences Vienna (BOKU) | Austria ³Geography Department | Humboldt-Universität zu Berlin | Germany

Problem

Human settlements and infrastructure in mountain regions are exposed to *destructive natural events*.

Large-scale evidence for effects of forest cover and disturbance on torrential hazards is *lacking*.

Europe`s forest are changing, with intensifying forest disturbances and increasing harvest levels.

Results

probability of torrential hazard events?

Increasing forest cover decreases torrential hazard probability

One standard deviation increase in forest cover decreases torrential

Distributed forest cover decreases torrential hazard probability

patch density (distinct forest patches per km²) decreases debris flow (flood) probability by -8%(-6%).

Julius Sebald

Institute of Silviculture | BOKU Vienna

Acknowledgements

This research was supported by Austrian Science Fund (FWF) through the project "Forest disturbances in a changing world" (grant Y895-B25).