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Trace elements in Opx, Cpx and Amp

 Partial melting plays an important role in the redistribution of elements within the lower 
continental crust in space and time. Ultimately, these processes affect the crust's chemical and 
mechanical properties, transport and enrich metals, and locally result in (hazardous) 
volcanism.

 Petrochronological investigations (i.e., linking time and duration to specific rock-forming 
processes and their physical conditions; Engi et al., 2017) may provide insights into crustal 
reworking throughout the evolution of the Earth. The high temperatures to which migmatites are 
subjected to often overprint prograde mineral assemblages and produce protracted zircon 
geochronological records, rendering pressure-temperature-time reconstructions a challenging 
task. In addition, garnet-free rocks lack the possibility of linking petrological information 
recorded in garnet with geochronological constraints obtained from zircon or monazite, the 
most wide-spread petrochronogical mineral pairs.

Can trace element compositions of amphibole, orthopyroxene and clinopyroxene 
combined to zircon be used to link timing data to petrological processes?
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Fig. 1: (A) Distribution of cratonic blocks and orogens in Western Gondwana (red rectangle: 
location of the studied region illustrated in B): WAC, West African craton; AC, Amazonian craton; 
SF, São Francisco craton; CC, Congo craton; PB, Paranapanema block; KC, Kalahari craton; 
RPC, Rio de la Plata craton. (B) Sketch map of the southernmost Brasília orogen (modified from 
Campos Neto et al., 2011; Cioffi et al., 2016; Westin et al., 2016). 

 Southern Brasília orogen (SE-Brazil)
          
A complex framework of east-verging nappe   

systems developed during the collisional 
stage in the Neoproterozoic (670-590 Ma); 

The Socorro-Guaxupé nappe: 
metamorphic remains of a pre-collisional 
magmatic arc formed at 790-640 Ma and 

metamorphosed at 660-600 Ma; 

Migmatites record ultra-high temperature 
metamorphism:  

T = 800-1050 °C and P = 8-14 kbar

Fig. 2: Sketch cross-section showing the field relationships of the studied rocks of the granulitic – 
Elói Mendes unit: (1) mafic granulite (residue), (2) banded granulite, (3) opdalite, (4) light-green 
charnockitic to enderbitic leucosome, and (5) pink hornblende-biotite-bearing granitic leucosome, 
and (6) mafic granulite enclave. Mesoscopic aspects of each sample: (A) Banded granulite with 
concordant light green charnockitic leucosome in stromatic structure (C-838-A); (B) mafic schollen 
(residue) in charnockitic leucosome with peritectic orthopyroxene and clinopyroxene (C-838-2); 
(C) schlieren of biotite and schollen of stromatic metatexite in the pink hornblende-biotitebearing 
granitic leucosome (C-838-B); (D) banded granulite (C-833-A); (E) Agmatic structure formed by 
the mafic granulite enclaves (sample C-716-B) in the diatexite; and (F) euhedral peritectic 
hornblende in the nebulitic diatexite. Detailed samples on this study correspond to the black stars.
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Fig. 3: Transmitted light, non-polarized photomicrographs from the studied rocks. Dotted pink lines outline faded domanial 
boundaries between leucosome and residue. (A) Relation between thin bands of residue and leucosome in the banded 
granulite (C-833-A), showing a leucosome depleted in mafic minerals (mostly orthopyroxene and clinopyroxene); (B) peritectic 
orthopyroxene and clinopyroxene in a band of leucosome relatively enriched in mafic minerals (C-838-A). 

Banded Opx-Cpx granulites

Mafic layers: 
Hbl+Pl+Bt+Cpx+Opx+Qz

Leucocratic layers: 
Kfs+Pl+Qz±Cpx±Opx±Hbl

Hbl replaces Opx and Cpx in the 
residue (selvedge). The only 

difference is that  C-833-A has 
only few Opx and Cpx in the 
leucosome (<10 vol.%) when 

compared to C-838-A (~25 vol.%). 
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Fig. 4: Compositional maps from EPMA imaging: (A) Phase map 
showing the texture of the banded granulite (C-838-A) with assigned 
phases based on quantified compositional maps. Dotted yellow 
rectangles indicate the position of compositional maps for clinopyroxene 
and orthopyroxene. 
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176 177 206 238Fig. 5: U-Pb  LA-ICP-MS data(Concordia and probability density diagrams), Hf/ Hf(t) ratio vs age (using Pb/ U dates), and chondrite-normalized REE diagrams for: banded granulite C-833-A (A-C) 
and banded granulite C-838-A (D-F). Ellipses in the Concordia diagrams are 2σ errors. 
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Protracted U-Pb zircon geochronological records 
prevent the determination of “ages”. However, different 
samples record same age peaks distribution.

176 177
 Hf/ Hf  allowed to constrain the crystallization age (t) 

of the protolith.

Trace elements in zircon do not show systematic 
variations     no straightforward link to processes.

176 177 Hf/ Hf  in the rims are different than in the cores in (t) 

C-833-A suggesting contribution of a Hf-enriched 
176 177melt/fluid. In sample C-838-A, Hf/ Hf  suggests (t) 

that the fluid/melt that interacted with the rock had no 
significant contribution from breakdown of Lu-sink. 

Fig. 6: Probability density diagram for the zircon U/Pb dates of the rims and 
single phases from the banded granulites (C-833-A and C-838-A) with other 
zircon rims from rocks in the same geological section. 

Are the protracted records 
related to multiple metamorphic 

events? Different stages? or 
domain-related reactions?
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Opx-Cpx-Amp observations:

C-833-A (no peritectic Opx and Cpx in the 
leucosome) REE signature when compared to C-
838-A:
- Stronger negative Eu anomalies for Amp and Cpx; 
- Higher variations in LREE and HREE contents;
- Opx is REE depleted and has more diffuse HREE 
pattern;
- Enrichment of HREEs in the Amp is incompatible 
with HREE release by Cpx breakdown.  

Fig. 7: Chondrite-normalized (McDonough and Sun, 1995) REE diagrams for amphibole, clinopyroxene, orthopyroxene, zircon and the bulk rock composition. 

Zrn observations:
 

- Variable Eu anomalies in both 
s a m p l e s  s u g g e s t  g r o w t h  i n 
associations with different amounts 
and/or compositions of feldspar; 
- Some zircon grains from C-833-A 
record low HREEs comparable with 
values from Cpx and Amp; 
- LREE enrichment in some grains from 
C-838-A.

Metamorphic zircon grains (620-680 Ma) that crystallized in the residue, where the transition from 
Cpx to Amp proceeded in the absence or presence of few melt, are depleted in HREEs. This 
suggests that HREEs from Cpx were directly incorporated by Amp and is supported by the light Eu 
anomalies of these Zrn grains when compared to the HREE-rich Zrn.   
 
Eu negative anomalies in Zrn increase where Kfs crystallizes, in volumes without Cpx. In C-838-A, 
Amp is less enriched in HREEs because in the presence of melt, HREE likely enters the structure 
of Zrn. The absence of external fluid/melt as demonstrated by Hf isotopes for some Zrn reduces 
the mobility of REEs. For C-833-A the absence of fluids corroborates a subsolidus crystallization 
for part of the grains that indeed record higher temperatures (Tedeschi et al., 2018).  Alternatively, 
the variation of trace elements in zircon could be caused by external melt/fluid components!?

At least partially, the protracted geochronological records potentially reflect 
domanial reactions in different stages of a prolonged metamorphic event. 

Discussion


