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. Siltation of nearshore channels due to coastal morphodynamics . Proper Orthogonal Decomposition on field measurements

The POD consists of writing an approximation of the bathymetry field Z(x, t) as a finite sum of a separate variables functions product, at a

given order d € N*. This would be written as Z(x,t) = Y.%_, a,(t)@y(x). The functions ¢ (x) and a,(t) are resp. called spatial modes
and temporal coefficients. They are orthogonal and are selected so that the order d € N* is minimum.

Sedimentation and siltation in nearshore channels is a well-known issue in harbors for
example (e.g. Figure 1). They imply frequent dredging interventions, with high
operational costs, often hindered by tight scheduling.
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because of the water pumping, which attracts the
sediments inside.

Figure 1: Silting of Bray Harbor, Irish Sea
(Muir Eireann). Source: Afloat Magazine.
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Figure 4: POD on bathymetry - Accuracy rate
and time-averaged RMSE as functions of the
approximation rank.

Outside the intake, many physical forcings influence the
sediments dynamics and drive them to the channel.
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Figure 3: The first three elements of the POD basis applied to the bathymetry
measurements and the first two associated temporal coefficients.

The application:
A water intake in a coastal area,
forced by many phenomena

Inside, a number of industrial forcings (pumping,
dredging, etc.) impact the settling of sediments by
their action on the flow. Therefore, a new
bathymetry is obtained.

Each spatial mode represents a dynamical pattern. The temporal variations of the associated
temporal coefficients represent a certain percentage of the variance of Z(x, t). The modes
a, (t)p,(x) are therefore associated to a represented variance percentage, here called
“accuracy rate” (see Figure 3). When increasing the order d € N*, these variance
percentages are added, giving an increasing accuracy rate (see Figure 4).

Figure 2: Sediment Resuspension. Source:
T. Miles, University of New Jersey
(https://www.travisnmiles.com/)
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IV. POD-PCE coupling as a data driven predictor

We attempt to project the estimation of future temporal coefficients a; (t,) in the
bathymetry POD basis, in order to construct a full prediction field as:

lll. Data-based learning with Polynomial Chaos Expansion

Let (04, ..., 0y) be a set of forcing parameters. We can construct a dynamical model H;, for
each ay, as: ai(tz) = Hy(ag(ty), t; — t1,04,...,0y)

If we consider that (04, ..., 0y) live in the space of real random variables with finite second
order moments, H;, can be constructed with PCE. The latter allows a polynomial
approximation of a random variable Y as:

Y (X1, s Xp) = Mo+ Doy M(XD) + Dicicjar M X X)) + 4 My y (X1, Xy, 0, Xy)
To identify the errors of all the algorithm’s steps on the final prediction, we plot the associated  Training Prediction|[e—e Realvalues e—e Best PCE model|

averaged residuals in time, for each geographical point of the channel, as shown in Figure 6. 201055 [ e
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that higher order temporal common contribution of the variables I € {1,...,VV} on the a,(t) 0.00
coefficients don’t vary much. As a variation of Y, in a polynomial form: C010
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forecasting error, a
approximation of coefficient
essential.
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Figure 6: Time-averaged error for each approximation step. Evolution with the POD rank.
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A “training set” is used to learn the PCE model, and a “prediction as(t)
set” to evaluate it on real scenarios. As shown in Figure 5, the
fitting works best when the signal shows some consistency. For a
more chaotic function, as the temporal coefficient 3, the PCE
fitting is poor, yet it approaches the order of magnitude and

seems to capture some peaks in the dynamics.
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Figure 5: PCE fits for the first three POD temporal coefficients using a training set

of 50 members. . The “best model” designation corresponds to a chosen
polynomial degree with) minimal training RMSE (Root Mean Squared Error).




