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I. Siltation of nearshore channels due to coastal morphodynamics

Figure 1: Silting of Bray Harbor, Irish Sea 

(Muir Éireann). Source: Afloat Magazine.

Sedimentation and siltation in nearshore channels is a well-known issue in harbors for
example (e.g. Figure 1). They imply frequent dredging interventions, with high
operational costs, often hindered by tight scheduling.

Power plant intakes are submitted to the same
constraints, in addition to acting as sinks for sediments
because of the water pumping, which attracts the
sediments inside.

Outside the intake, many physical forcings influence the
sediments dynamics and drive them to the channel.

Inside, a number of industrial forcings (pumping,
dredging, etc.) impact the settling of sediments by
their action on the flow. Therefore, a new
bathymetry is obtained.

Figure 2: Sediment Resuspension. Source: 

T. Miles, University of New Jersey 

(https://www.travisnmiles.com/)

II. Proper Orthogonal Decomposition on field measurements

Figure 3: The first three elements of the POD basis applied to the  bathymetry 
measurements and the first two associated temporal coefficients. 

The POD consists of writing an approximation of the bathymetry field 𝑍(𝑥, 𝑡) as a finite sum of a separate variables functions product, at a

given order 𝑑 ∈ ℕ∗. This would be written as 𝑍 𝑥, 𝑡 ≈  𝑘=1
𝑑 𝑎𝑘 𝑡 𝝋𝑘 𝑥 . The functions 𝝋𝑘 𝑥 and 𝑎𝑘 𝑡 are resp. called spatial modes

and temporal coefficients. They are orthogonal and are selected so that the order 𝑑 ∈ ℕ∗ is minimum.

Each spatial mode represents a dynamical pattern. The temporal variations of the associated
temporal coefficients represent a certain percentage of the variance of 𝑍 𝑥, 𝑡 . The modes
𝑎𝑘 𝑡 𝝋𝑘 𝑥 are therefore associated to a represented variance percentage, here called
“accuracy rate” (see Figure 3). When increasing the order d ∈ ℕ∗ , these variance
percentages are added, giving an increasing accuracy rate (see Figure 4).

Figure 4: POD on bathymetry - Accuracy rate 
and time-averaged  RMSE as functions of the 

approximation rank.

IV. POD-PCE coupling as a data driven predictor

Let 𝛉𝟏, … , 𝛉𝑽 be a set of forcing parameters. We can construct a dynamical model𝓗𝑘 for
each 𝑎𝑘 as: 𝑎𝑘 𝑡2 = 𝓗𝑘 𝑎𝑘 𝑡1 , 𝑡2 − 𝑡1, 𝛉𝟏, … , 𝛉𝑽

If we consider that 𝛉𝟏, … , 𝛉𝑽 live in the space of real random variables with finite second
order moments, 𝓗𝑘 can be constructed with PCE. The latter allows a polynomial
approximation of a random variable Y as:

𝑌 𝐗1, … , 𝐗𝑉 =𝓜0 +  𝑖=1
𝑉 𝓜𝑖(𝐗𝑖) +  1≤𝑖<𝑗≤𝑉𝓜𝑖,𝑗(𝐗𝑖 , 𝐗𝑗) + ⋯+ 𝓜1,…,𝑉 𝐗1, 𝐗2, … , 𝐗𝑉 , 

where 𝓜0 is the mean of 𝑌 and 𝓜𝐼⊆{1,…,𝑉} represents the

common contribution of the variables 𝐼 ⊆ {1,… , 𝑉} on the
variation of 𝑌, in a polynomial form:
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A “training set” is used to learn the PCE model, and a “prediction
set” to evaluate it on real scenarios. As shown in Figure 5, the
fitting works best when the signal shows some consistency. For a
more chaotic function, as the temporal coefficient 3, the PCE
fitting is poor, yet it approaches the order of magnitude and
seems to capture some peaks in the dynamics.

Figure 5: PCE fits for the first three POD temporal coefficients using a training set 
of 50 members. . The “best model” designation corresponds to a chosen 

polynomial degree with) minimal training RMSE (Root Mean Squared Error).

𝑍 𝑥, 𝑡2 ≈  𝑘=1
𝑑 𝑎𝑘 𝑡2 𝝋𝑘 𝑥
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𝑘=1
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𝓗𝑘 𝑎𝑘 𝑡1 , 𝑡2 − 𝑡1, 𝛉𝟏, … , 𝛉𝑽 𝝋𝑘 𝑥

To identify the errors of all the algorithm’s steps on the final prediction, we plot the associated
averaged residuals in time, for each geographical point of the channel, as shown in Figure 6.

Figure 6: Time-averaged  error for each approximation step. Evolution with the POD rank.

The POD error decreases when
increasing the rank d. However, the
PCE error increases dramatically from
Rank 2 to 3, and becomes stationary
for higher ranks. This is due to the fact
that higher order temporal
coefficients don’t vary much. As a
consequence, in order to decrease the
forecasting error, a better
approximation of coefficient 3 is
essential.

We attempt to project the estimation of future temporal coefficients 𝑎𝑘 𝑡2 in the
bathymetry POD basis, in order to construct a full prediction field as:

III. Data-based learning with Polynomial Chaos Expansion
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The application: 
A water intake in a coastal area, 
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