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Types of weak layers

Where do submarine landslides initiate?

What causes submarine landslides?

Hypothesis: Submarine landslides initiate along weak layers, which are embedded within the slope stratigraphy

Main questions: 1. Can we identify prominent layers along which submarine landslides initiate?

Weak sediment layers within the slope stratigraphy that have a strength 
lower than the surrounding units and provide a potential focus for the 
formation of a failure plane (Locat et al., 2014)

2. Where can we find these layers?

Weak layer concept

Case studies
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seafloor mapping (e.g. bathymetry)

subsurface surveys

core and insitu testing (inside failure area)

core and insitu testing (outside failure area)

long-term monitoring

The identification of the weak layers of 
submarine landslides requires a multi-disciplinary approach
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Conclusions
1. Weak layers can involve various sediment types and failure processes. However, 

  - the weak layer (if identifyable) does not have to be the failure plane
   - there is a lack of detailed case studies focusing on the weak layer/failure plane

   - failure planes likely form along permeability and strength interfaces related to weak layers

2. Weak layers can be found worldwide in a variety of environments
    - e.g. fjords - sensitive clay deposits, contour currents - contourite deposits, volcanoes - tephra

      The identification of the failure plane requires a multi-disciplinary approach

Multi-disciplinary 
research

Approach: Synthesis of submarine landslide studies, specifically focusing on the role of weak layers in their 
                   inception 

3 types of weak layers:
     -   excess pore pressure
     -   excess pore pressure + strength reduction
     -   strength reduction 

Figure 2. Map showing 22 
examples of submarine slides 
and slumps, for which the failure 
plane was identified (Credits: ESRI, 
Garmin, GEBCO, NOAA, NGDC and others).
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Figure 1. Schematic illustration of a failure plane and the Mohr-Coulomb failure 
criterion (after Hampton et al., 1996).
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