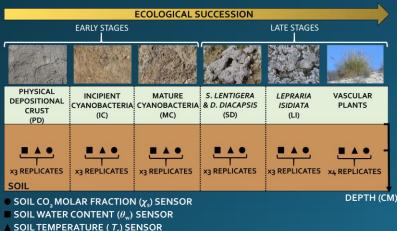
Uspace Responses of Soil-Atmosphere CO₂ EXCHANGE TO BIOPHYSICAL AND GEOCHEMICAL FACTORS OVER A BIOCRUST ECOLOGICAL SUCCESSION IN THE TABERNAS DESERT

Clément Lopez-Canfin^{1,2} (lopezcle@gmail.com), Roberto Lázaro², Enrique P. Sánchez-Cañete^{2,3}

¹Department of Applied Physics, University of Granada, Spain ² Experimental Station of Arid Zones, Almería, Spain ³ Inter-University Institute for Earth System Research (IISTA-CEAMA), Granada, Spain

BACKGROUND

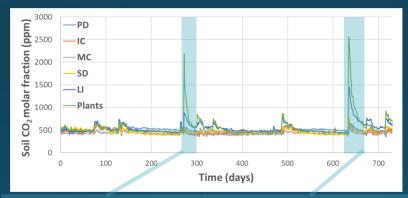
MOTIVATION

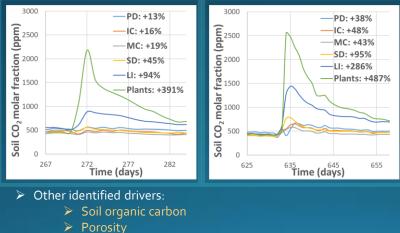

- It is still unknown how soil CO2 fluxes evolve during the ecological succession of biocrusts and which factors control them.
- In drylands, potential abiotic processes of CO2 uptake are still debated while estimates of the biotic contribution of photosynthetizing biocrusts to the net carbon uptake remain uncertain.

MAIN OBJECTIVE

> To identify the factors controlling soil-atmosphere CO2 fluxes

METHODOLOGY

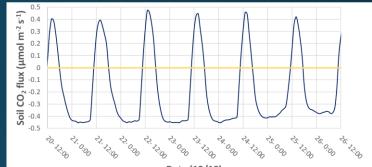

- > Automated continuous measurements (every 20 min.) over 2 years
- > Replicated spatially over the ecological succession of biocrusts
- Spatio-temporal statistical analysis



MAIN FINDINGS I

CO2 PRODUCTION PROCESSES

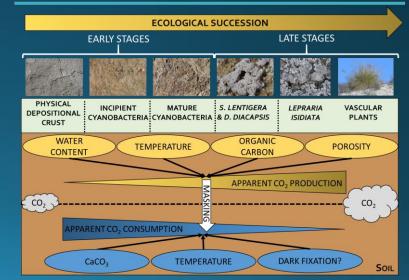
- Pulse response to precipitation
- > Mainly controlled by θ_w interacting with T_s and antecedent moisture conditions (Birch effect)
- > Sensitivity to $\theta_w \nearrow$ from early to late successional stages


ACKNOWLEDGEMENTS

Funded by the research projects CGL2016-78075-P of the Spanish National Program and P18-RT-3629 of the Andalusian Regional Government including European Union ERDF

MAIN FINDINGS II

CO2 CONSUMPTION PROCESSES


- > Observed at night, mainly in early stages of succession
- Able to offset CO₂ emissions in some locations (115% of efflux)

Date (12/18)

Results suggest a geochemical process of CaCO₃ dissolution

SUMMARY

