

Drought years of 2018 and 2019 affect CO₂ balance of urban forest ecosystems in the Ruhr Metropolitan Region (Germany) differently

Tobias Scholz

Lutz Weihermüller

Thomas Schmitt

EGU General Assembly 2021

"Complex case studies for ecosystem responses to climate and hydrological extremes" (BG3.17)

27.04.2021

Motivation & Objective

- Investigation on CO₂ balance of different urban forest types in the Ruhr Metropolitan Region in West-Germany for the years 2018 and 2019
- Eleven monitoring sites located in the center of the agglomeration

CO₂ balance considering CO₂ uptake by forest growth, CO₂ translocation by litterfall, and CO₂ release by soil respiration

Investigated urban forest types

- Old-grown beech, maple, and oak forests (> 100 a)
- Deep native soils
- Large soil carbon content
- No limitation in rooting

- Planted forests in parks and on heaps
- Before planting, a topsoil was added
- Low soil carbon content
- Rooting limitation due to sealed soil layers

- Autochthonous birch forests
- Coarse and loosy soils from coal mining activity
- Low soil carbon content
- Rooting limitation due to sealed soil layers

Characteristics of the drought years 2018/2019

Precipitation	
Long-term	865 mm
2018	544 mm
2019	739 mm
Temperature	
Long-term	11.0 °C
2018	11.6 °C
2019	11.2 °C

- Experimental period (2018/2019) was much warmer and drier than typical.
- Precipitation deficit of 321 mm (-37%) in 2018 and 126 mm (-15%) in 2019.

PCA & Correlation analysis

Annual changes in CO₂ uptake are highly correlated with rooting depth, soil carbon content, and amount of plant available water

→ CO₂ sequestration decreased stronger on sites with limited rooting zone, low soil carbon content, and low plant available water.

Conclusion

- Good soil conditions are crucial for forest growth in urban areas.
- Urban forest ecosystems with unfavorable growth conditions can turn from carbon sinks into sources during droughts.

