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Setting

Goal: Find best postprocessing method for ensemble forecasts of wind gusts.

⇒ Review and comparison of existing postprocessing approaches

Basic methods:

Only wind gust ensemble

EMOS

MBM

IDR

Separate model for
each station!

ML benchmark:

Use additional predictors

EMOS-GB

QRF

Separate model for
each station!

Neural networks:

Locally adaptive

DRN

BQN

HEN

Joint model for
all stations!

Schulz, B. and Lerch, S. (2022): Machine learning methods for postprocessing ensemble
forecasts of wind gusts: A systematic comparison, Monthly Weather Review, 150, 235–257.
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CRPSS over Lead Time
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CRPS skill of the postprocessing methods w.r.t. the ensemble dependent on the lead time.
Each method is applied for each lead time separately. Higher means better.
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Skill in Winter Storms
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CRPS skill of EMOS (left) and DRN (right) w.r.t. the ensemble dependent on the lead time.
Each method is applied for each lead time separately. Higher means better.
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Reliability in Winter Storms
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Prediction interval coverage of EMOS (left) and DRN (right) dependent on the lead time.
Each method is applied for each lead time separately.

6



Forecast Uncertainty in Winter Storms
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Prediction interval length of EMOS (left) and DRN (right) dependent on the lead time.
Each method is applied for each lead time separately.
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Conclusions and Outlook

Systematic comparison:
Neural networks significantly outperform state-of-the-art benchmark methods.
The neural networks learn physically consistent relations (not shown).

Winter storms:
Neural networks outperform postprocessing benchmark also within winter storms.
Neural networks are more reliable and better represent the forecast uncertainty.
Neural networks are still subject to a forecast bust.

Outlook:
Investigate effect of predictors on neural networks within winter storms.
Feature-dependent forecast error analysis and postprocessing.
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