

Machine learning for postprocessing ensemble forecasts of wind gusts with a focus on European winter storms

Benedikt Schulz and Sebastian Lerch

Karlsruhe Institute of Technology (KIT)

EGU General Assembly 2022, 26/05/2022

NP 5.1: Advances in statistical post-processing, blending and verification of deterministic and ensemble forecasts

Agenda

Machine learning methods for postprocessing ensemble forecasts of wind gusts

Postprocessing in European winter storms

Setting

Goal: Find best postprocessing method for ensemble forecasts of wind gusts.

⇒ Review and comparison of existing postprocessing approaches

Basic methods:

Only wind gust ensemble

- EMOS
- MBM
- IDR

Separate model for each station!

ML benchmark:

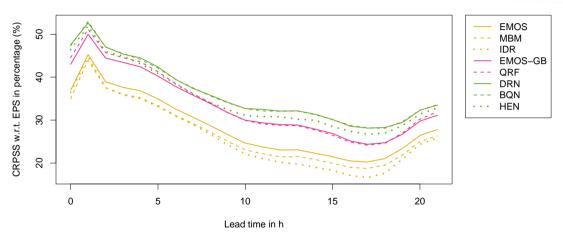
Use additional predictors

- EMOS-GB
- QRF

Separate model for each station!

Neural networks:

Locally adaptive


- DRN
- BQN
- HEN

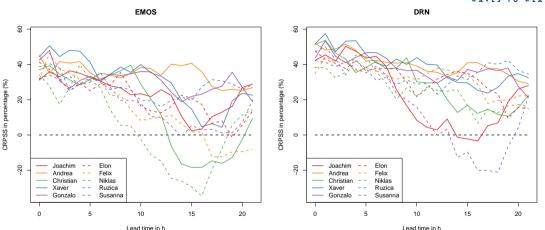
Joint model for all stations!

Schulz, B. and Lerch, S. (2022): **Machine learning methods for postprocessing ensemble forecasts of wind gusts: A systematic comparison**, *Monthly Weather Review*, **150**, 235–257.

CRPSS over Lead Time

CRPS skill of the postprocessing methods w.r.t. the ensemble dependent on the lead time. Each method is applied for each lead time separately. Higher means better.

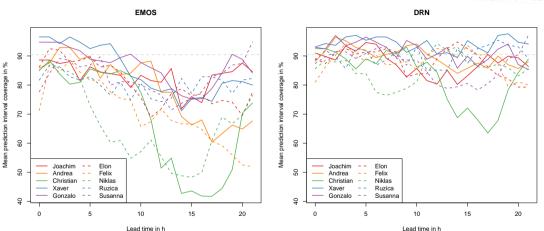
Agenda



Machine learning methods for postprocessing ensemble forecasts of wind gusts

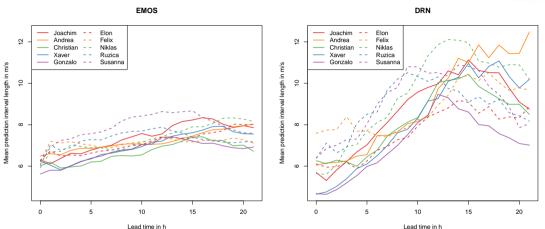
Postprocessing in European winter storms

Skill in Winter Storms



CRPS skill of EMOS (left) and DRN (right) w.r.t. the ensemble dependent on the lead time. Each method is applied for each lead time separately. Higher means better.

Reliability in Winter Storms



Prediction interval coverage of EMOS (left) and DRN (right) dependent on the lead time.

Each method is applied for each lead time separately.

Forecast Uncertainty in Winter Storms

Prediction interval length of EMOS (left) and DRN (right) dependent on the lead time. Each method is applied for each lead time separately.

Conclusions and Outlook

Systematic comparison:

- Neural networks significantly outperform state-of-the-art benchmark methods.
- The neural networks learn physically consistent relations (not shown).

Winter storms:

- Neural networks outperform postprocessing benchmark also within winter storms.
- Neural networks are more reliable and better represent the forecast uncertainty.
- Neural networks are still subject to a forecast bust.

Outlook:

- Investigate effect of predictors on neural networks within winter storms.
- Feature-dependent forecast error analysis and postprocessing.