

Koninklijk Nederlands Meteorologisch Instituut Ministerie van Infrastructuur en Waterstaat

Improving sub-seasonal temperature forecasts by correcting missing teleconnections using ANNbased post-processing

Chiem van Straaten, Kirien Whan, Dim Coumou, Bart van den Hurk, Maurice Schmeits

Missed opportunities in sub-seasonal forecasting

ANN-based post-processing

Inspired by Scheuerer et al. (2020)

Correcting conditional errors

Target: monthly temperature in western Europe > 0.5 quantile Lead time: 12-15 days

Samples (ordered by hierarchical clustering)

SST pattern explains conditional errors

Target: monthly temperature in western Europe > 0.5 quantile

SST pattern predicts missed atmospheric wave

31 day z300 anomalies

Summary

chiem.van.straaten@knmi.nl

Contact

The ANN architecture provides:

- an alternative way forward
- corrections that improve forecast skill
- an XAI explanation of the missed opportunity

References:

Scheuerer, M., Switanek, M. B., Worsnop, R. P., & Hamill, T. M. (2020). Using artificial neural networks for generating probabilistic subseasonal precipitation forecasts over California. Monthly Weather Review, 148(8), 3489-3506. <u>https://doi.org/10.1175/MWR-D-20-0096.1</u>

van Straaten, C., Whan, K., Coumou, D., van den Hurk, B., & Schmeits, M. (2022) Improving sub-seasonal forecasts by correcting missing teleconnections using ANN-based post-processing (in preparation)

van Straaten, C., Whan, K., Coumou, D., van den Hurk, B., & Schmeits, M. (2022). Using explainable machine learning forecasts to discover sub-seasonal drivers of high summer temperatures in western and central Europe. Monthly Weather Review. 150(5) <u>https://doi.org/10.1175/MWR-D-21-0201.1</u>

Paper describing predictors from initialization

Supplementary material

Regional averages

Additional verification

Target: 31-day average temperature in western europe > ...quantile Lead time: 12-15 days

Additional verification

Target: 31-day average temperature in western europe > 0.5 quantile Lead time: 12-15 days

Selected Predictors

Target: 31-day average temperature in western europe > 0.5 quantile Lead time: 12-15 days

Conditional corrections, top 3 predictors

Target: 31-day average temperature in western europe > 0.5 quantile Lead time: 12-15 days

Situational composites

Interpretation of corrections

Explainable AI

