

Spatio-temporal Variability of the Marine Heatwaves in the Mediterranean Sea over 39 years, and their Possible Physical Drivers

Manal Hamdeno and Aida Alvera Azcárate GHER, University of Liège, Liège, Belgium

manal@doct.uliege.be

Sea surface temperature anomalies measured in September 2020. Red shows where sea surface temperature is warmer than its long-term average (1981 to 2010). © NOAA

MARINE HEATWAVES

MHW are extended periods of regional ocean warming. They have major impacts on marine life and human society.

The impacts of MHWs © IUCN

THE MAIN OBJECTIVES:

1- Investigate the **spatiotemporal variability of marine heatwaves** in the Mediterranean Sea over a 39-year period (1982 - 2020).

2- Compare the distribution of **MHWs in the eastern and western Mediterranean basins**.

3- Investigate the relationship between the occurrence of MHWs and heat flux, different atmospheric variables, and mixed layer variability.

THE DATA SOURCES

The spatial variability of the Mediterranean Sea MHWs from 1982 to 2020

Between 1982 to 2020

- The average MHW frequency was between 1 and 3 events.
- The duration ranged from 5 to more than 20 days.
 - i_{max} fluctuated between 1 and 3 °C.

There is dissimilarity between MHWs in the EMED and the WMED

- WMED marine heatwaves were frequent and intense.
- EMED marine heatwaves were long.

The temporal variability of the Mediterranean Sea MHWs from 1982 to 2020

The 2019 MHW events in the WMED and EMED basins

I Moderate II Strong III Severe IV Extreme

The 2019 MHW events in the WMED and EMED basins

Loc.	Event no.	Onset_Day	Peak_Day	End_Day	Duration (days)	Max. Intensity (°C)	Mean Intensity (°C)	MHW Category	Qi_anom (W/m²)
WMED	1	26-06-2019	03-07-2019	10-07-2019	15	6.42	5.27	II Strong	15.77
	2	22-07-2019	25-07-2019	27-07-2019	6	4.80	4.14	II Strong	13.63
	3	08-08-2019	10-08-2019	12-08-2019	5	3.29	2.85	I Moderate	45.2
	4	24-08-2019	31-08-2019	03-09-2019	11	5.38	4.18	II Strong	78.32
	5	15-09-2019	19-09-2019	02-10-2019	18	3.26	2.64	I Moderate	6.98
	6	19-10-2019	31-10-2019	07-11-2019	20	2.25	1.81	I Moderate	-102.58
EMED	1	23-06-2019	30-06-2019	13-07-2019	21	2.68	1.96	II Strong	-47.33
	2	22-07-2019	23-10-2019	27-12-2019	159	2.69	1.91	II Strong	36.99

Heat Flux Anomaly

MLD and SST anomaly

Atmospheric variables and MHWs in the WMED

Atmospheric variables and MHWs in the EMED

CONCLUSIONS

	Western Mediterranean	Eastern Mediterranean		
MHWs Characteristics	Intense and Frequent	Long		
Average Heat Flux Anomaly Associated to the MHW Events	+ ve	- ve		
Mixed Layer Thickness Associated to the MHW Events	Shallower Mixed Layer Depth			
Atmospheric Condition Associated to the MHW Events	High Air Temperature (> 25 °C), High Mean Sea Level Pressure (> 1014 hPa), and Low Wind Shear.			

THANKS FOR YOUR ATTENTION

Manal Hamdeno Elawady

PhD student, GHER, University of Liège, Belgium

manal@doct.uliege.be