
Michaël Pons1,2, Stephan Sobolev1,2 , Sibiao Liu1,2, Derek Neuharth1

23th May 2021, GD 5.2 Subduction

1GFZ German Research Center For Geoscience, Germany  
2Institute of geosciences, University of Potsdam, Germany

Variability of the shortening rate in Central Andes controlled by 
subduction dynamics and interaction between slab and overriding plate
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Tectonic setting

What mechanism controls the temporal variation of the 
shortening rate in Central Andes ? 
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Timing of the Flat slab at Altiplano latitude

Bello-Gonzalez et al., 2018Ramos and Folguera, 2009
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Model set up

Visco-plastic (dislocation, diffusion creep, plasticity). Computations were done using the ASPECT code version 2.3.0
Preprint available : Pons, M., Sobolev, S. V., Liu, S., & Neuharth, D. (2022). Trench migration and slab buckling control the formation of the Central Andes. (In preparation, G3)
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https://eartharxiv.org/repository/view/3066/


Model evolution

Flat slab is necessary to 
trigger the initial delamination 

4

Video
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Model interpretation

• The forced trench retreat from the overriding plate motion prevents the slab to pile up (b - c).

• Therefore the slab sinks in the upper mantle and steepens at the end of a buckling cycle hindering the trench (d). 

• The difference of velocity between the trench and the overriding plate is accommodated by shortening. 

• Steepening also happens just after the passage of the flat slab (a)

Shortening = 45 km Shortening = 5 km Shortening = 25 km 
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Model results

I II III IV

• Shortening rate and timing of uplift are consistent with previous estimates (Oncken et al., 2006,2012 ; Garzione et al., 2017)

• Our model predicts higher shortening at  30 Ma. New study indicates higher shortening in Western Andean Flank (Habel et 
al. 2022).

• Melting and Lower crustal flow processes are not taken into account and can contribute to smooth Phase II before the start 
of the delamination. 6



Trench retreat 
and advance

Shortening
Underthrusting

I am looking for a Post-doc position for the end of 2022.
I am open to new ideas and projects, please contact me at ponsm@gfz-potsdam.de

Summary of the way the forces are accommodated

What mechanism controls the temporal variability of the shortening ?  

• Overriding plate weakening by eclogitization and delamination.

• Foreland sediments weakening allows the underthrusting.

• Subduction interface friction coefficient of ~0.05

The key factors  are:  
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It is the “Hindering of the trench by steepening of the 
slab” that controls the variability of the shortening rate 
in Central Andes. This occurs when the slab sinks freely 
and does not encounter an obstacle due to the forced 
trench retreat. 

The answer is:  

thank you for your attention !
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