

Long-term soil warming alters fine root dynamics and morphology, and their ectomycorrhizal fungal community in a temperate forest soil

Steve Kwatcho Kengdo, Derek Peršoh, Andreas Schindlbacher, Jakob Heinzle, Ye Tian, Wolfgang Wanek, Werner Borken

Contact: steve.kwatcho-kengdo@uni-bayreuth.de

Bayreuth Center of Ecology and Environmental Research

Hypotheses

Soil warming:

H1: increases fine root biomass

H2: increases the absorptive capacity of fine roots

H3: changes the ectomycorrhizal fungal community

UNIVERSITÄT BAYREUTH

3

Mixed forest stand

Rendzic Leptosol on dolomitic bedrock; 20 cm thickness

Soil warming experiment at Achenkirch, Tyrol, Austria (2004 - present)

+ 4°C at 5cm soil depth during the snow-free season

Results

1) Fine root biomass at 0 – 20 cm soil depth

Control Warming

Increasing fine root biomass indicates greater plant below-ground C allocation

Bayreuth Center of Ecology and Environmental Research

2) Fine root morphological traits at 0 – 20 cm soil depth

Increase in absorptive surface of root systems

Bayceer

3) EcM community at 0 – 10 and 10 – 20 cm soil depth

Soil warming changed the EcM community

> No effects on EcM exploration types and

7

Bayreuth Center of Ecology and Environmental Research

Conclusion

Global warming:

> increases soil carbon input due to increased fine root production

improves nutrient foraging through changes in fine root morphology

More details...

Long-term soil warming alters fine root dynamics and morphology, and their ectomycorrhizal fungal community in a temperate forest soil

Steve Kwatcho Kengdo¹ | Derek Peršoh² | Andreas Schindlbacher³ Jakob Heinzle³ | Ye Tian⁴ | Wolfgang Wanek⁴ | Werner Borken¹

