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1. Abstract 5. Vertical model residuals

The Earth’s ionosphere affects the propagation of signals from the Global Navigation Satellite Systems

3. Model comparison with COSMIC data

a Model bias b Model percentage bias

(GNSS). Due to the non-uniform coverage of available observations and complicated dynamics of the a COSMIC vs IRl densities b COSMIC vs NET densities 600 600
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Figure 1. (a) Distribution of the P10.7 index and the data splitting; (b) An example of the COSMIC profile (orange) and the fitted data using the
alpha-Chapman function with a linear decay of scale height with altitude (black); (c) Observed scale height and the linear fit;
(d) Schematics of the model workflow.

Figure 3. Maps of the four parameters observed by COSMIC and predicted using the NET model, binned by magnetic latitude and local time.
The data cover the time interval from 11/2013 until 02/2014 (D-season conditions), and are sampled from the validation and test sets.



