

¹Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, al. Mickiewicza 30, Kraków, 30-059, Poland (*correspondence: bpuzio@agh.edu.pl)

volume $V_{\rm m}$ and **optimized** Volume-based Thermodynamics (VBT).

subgroups are preserved (Fig. 3). This is important output for further evaluation.

the linear trend defined by halides (Puzio & Manecki 2022).

volume for inorganic compounds, which can be described by the equation:

$$S^{\circ}_{298.15K}\left(\frac{J}{mol\cdot K}\right) = 1262 \times V_m(nm^3) + 13$$

based on molar **volume alone** (Fig. 1).

compounds as a single population regardless of e.g., crystal system.

Hypothesis: VBT gives accurate estimated S° results if applied to narrow **subgroups** of compounds with the same crystal system, i.e., morphology.

Estimation of missing third-law standard entropy of apatites using the optimized Volume-based Thermodynamics

Bartosz **Puzio**^{1*} and Maciej **Manecki**¹

Puzio, B., & Manecki, M. (2022). The prediction method for standard enthalpies of apatites using the molar volume, lattice energy, and linear correlations from existing experimental data. Contributions to Mineralogy and Petrology, 177(11), 103.

23 - 28 April 2023

$= a_i \times V_m(nm^3) + b_i$	(2)
Slope coefficient <mark>a</mark> i	b _i
2129.8	-347.4
2065.8	-332.2
2123.1	-443.8
1935.2	-158.1
1046.4	579.5
1587.1	32.4
2153.7	-147.8
2910.2	-684.6

0.90