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Insights into Aqueous Glyoxal Chemistry via Glass Transition Measurements
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Introduction
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liquid or glassy particles.!]

to form crystalline aerosol particles,

Aerosols greatly influence various processes
Earth’s atmosphere through different direct and
indirect effects. The extent of this influence, however,
Is not well understood, in part because aerosol

properties such as the phase state are often variable ‘

consisting of organic compounds and their mixtures

with other organic and/or inorganic species may form

Ubiquity of organic aerosol components
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Zhang et al., GRL 2007

aerosols Rising question:

so; Phase state of mixed aerosol

particles:
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organics Are they crystalline, liquid or glassy?,

DSC & Glass
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T. Husband, ChemMatters 2014.

Glass: Non-crystalline amorphous solid
without long-range molecular order but
mechanical properties of a solid.!*

Differential Scanning Calorimetry

Typical DSC curves!?!
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Reprinted with permission from J. Phys. Chem. A 2014, 118, 34, 7024-7033. Copyright 2014 American Chemical Society.
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. pure ic/i ' pure
« Glass formation at room temperature organic O alid mixtres inorganic

« Small probability of crystallization because of small individual airborne droplets

« Fast glass formation on the timescale of seconds
« No further sample preparation needed

e Study of multicomponent mixtures possible

Reprinted with permission from J. Phys. Chem. A 2015, 119, 19, 4552-4561. Copyright 2015 American Chemical Society.
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- Repeated drying of a 40 wt% solution (red)
shows no change (exclusion of influences
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: - T, of a diluted solution decreases with time
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Further Reading after dilution. The decline is stronger at room
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Space Chem 2021, 5, - Two chemical processes dominate the
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chemistry in aqueous solution: trimer

hydrolysis and dimer hydrolysis
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EA(ty) = 56 kJ mol- EA(t,) = 71 kJ mol?

Trimer hydrolysis Dimer hydrolysisl’]
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Conclusion

Glyoxal forms highly viscous particles upon fast
and slow drying

Equilibration time after dilution, mimicking water
uptake in the atmosphere, is slow — especially for
low temperatures

T, measurements can be used to infer information
on the aqueous chemistry of organic molecules in
solution in slowly equilibrating systems
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