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4. Closed loop simulations of future satellite gravimetry observation concept (MAGIC)
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5 . Simulation results

Satellite Altimetry * Improved long-term trend (Fig. 7) with:
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Fig. 3: Satellite altimetry range
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3. Climate model projections to evaluate improvements of future satellite gravity missions o . || double pair (Table 1)

0,5 EWH [mm/yr.]

 After a couple of years OT-aliasing is no
more reduced by the increased number
of observations, due to the fixed orbit
repeat pattern.

» Climate model data from CMIP6 ensemble mean projection with yearly resolution. . .
* Included mass changes from offline models are ice sheets and glacier signals. o
« Challenging difference in magnitudes over land compared to sea:

« Over the continents, trends are several decimeter per year

« Over the ocean, trends are only a few millimeter per year.

Fig. 7. Residuals for linear trend estimation from single (upper row) and double pair (lower row) simulations
considering (from left to right) 10, 30, 50, 80 years of observations given in EWH [mmyr-].

| Refeence | SinglePair Double Pair

[yrs.] Ocean RMS [mm/yr.] Ocean RMS [mm/yr.]

10 1.16 7.76 0.86
30 1.85 0.98 0.13
50 2.44 0.91 0.22
80 3.76 0.97 0.26
Table 1. Mean ocean trend computed between latitudes /1={§ _72 and the corresponding root mean square error of the
residuals over the ocean for single and double pair for the time intervals 10, 30, 50, and 80 years.

Mean ASL,,,ss [Mmm/yr.]

 The residuals show a minimum, after 30
years.

Model data from 2016 to 2100 (d/o 170) is used to answer the question:

* The increase in residuals after 30 years
Is correlated with the accelerated ice
loss increasing the Gibbs effect.

What improvements in accuracy of AOHC can be expected from the Mass =

change And Geosciences International Constellation (MAGIC)? Fig. 5 Climate model data in mm EWH after spherical
harmonic analysis to d/o 170. Example for 2016.

6. Outlook & Conclusions

» The simulation environment allows realistic estimation of satellite gravity observations for GRACE-FO and MAGIC constellation for Spherical Harmonic (SH) degree 80. In future work it is planned to increase the maximum degree and order to 160.
» Large difference in the input signal magnitude between continents and ocean causes Gibbs phenomena in the SH representation, especially in regions of intense and localized signals.
» Post-processing of simulation results is still to be done. As well as the computation of the thermosteric sea-level change ASL; ..., t0 evaluate the gain in accuracy that is to be expect from MAGIC for the assessment of EEI.

» MAGIC already shows a clear improvement in RMS estimating ASL,,,.s especially in the areas covered by the inclined pair between the latitudes -70 and 70.
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