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The dynamics of biologically induced crystallization CO, Storage & Utilisation: Improving storage integrity

What is ureolytic induced carbonate precipitation (UICP)? Reduced permeability, Reduced leakage risk

UICP mimics a naturally occurring biomineralization process caused by soil bacteria that When CO; dissolves in water it forms carbonic acid, which is corrosive to carbonate

produce the enzyme urease. We investigate the subsurface engineering applications of minerals. We plan to explore the buffering effect of dissolved calcite on migration of the

this intra-aggregate precipitation process using real-time 4D (3D + time) X-Ray Computed reactive front. By better understanding how pore networks develop during UICP, and in

Tomography (XCT). the presence of CO; enriched brines, the required volume of biomineralized material is

calculated, and experimentally validated to prevent leakage.

) In situ environmental conditions using high temperature and pressure flow cells

) Tests across a range of grain size/shape distributions and minerologies

Permeability simulation and pore network modeling allow correlation
between microstructural properties and fluid flow/reactive transport
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Low fluid mixing rates during 2-phase UICP may allow the formation of larger crystals. However, the overall

precipitation efficiency and spatial homogeneity of precipitated CaCO3 is likely reduced (Above: mean CaCO3 . . _ Closing pore throats =

distribution a) radial, b) axial, and c) the 3D distribution of CaCO3 (red) 65 minutes post 2-phase UICP). 3D Rendering Flow Simulation Pore throat model reduced permeability

Geothermal and thermal energy storage

Improving the thermal properties of soils and well casings Untreated thermal conductivity of dry
Precipitated minerals at the intergranular contacts between soil grains following mixtures
microbially induced carbonate precipitation (MICP) can greatly increase the thermal Formation of il , ;
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Expanded graphite channels (dark blue) may enhance thermal
bridging between crushed quartz sand grains (white/yellow).
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Crushed quartz sand (99 wt%) and expanded graphite (1 wt%) prior to MICP at various magnifications (a - d). e) Quartz sand (95 wt%) and expanded graphite (5 wt%) at various stages during microbially induced carbonate
a single greyscale projection and f) a theoretical borehole thermal energy storage system that utilises thermally precipitation (MICP). The columns become progressively lighter as calcite is precipitated. The % increase in thermal
enhanced grouts to store surplus renewable electricity. For the full video please follow the QR code. conductivity (above) is relative to dry quartz sand.
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