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1. Introduction & Motivation 4. Impact on the Surface Energy Budget 5. Sensitivity Study: Altered Moisture Inflow

* ldea: Simulate similar AR with reduced (increased) strength by decreasing
(increasing) moisture inflow at the lateral boundaries

* Majority of poleward moisture transport occurs via Atmospheric Rivers (ARs) surface energy budget (SEB) = solar radiation (=0 fall/winter case) +

* ARs are long, narrow structures that carry anomalously large amounts of terrestrial radiation (LW) + sensible heat (SH) + latent heat (LH) . . ; . . . .
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over the sea ice edge
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7. Outlook

Climatological examination of ARs regarding their Occurence of ARs in Nov
impact on the SEB:

6. Conclusions

Event shows a less negative SEB (i.e. less energy loss) over ocean and even a
change from negative to positive SEB over sea ice.

Seasonal & regional differences

Extreme events

Connection to circulation patterns
Dependence on sea ice cover and thickness
Categorization in wet & windy ARs

Reducing the AR strength (moisture) causes a reduced impact on SEB,
especially due to less downward longwave radiation.

The sensitivity study suggests for this case: While the presence of a cloud is
important, the change in the SEB during the event seems to be more sensitive
to changes in IWV than in cloud water.
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