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a: Average tropical deep
convective cloud (DCC) cloud
radiative effect (CRE) is 0, despite
large shortwave/longwave fluxes

> 90 000 cores

b: we track anvils and associated
cores to study lifecycle and CRE

c: we find a bi-modal CRE
distribution, with both peaks
consisting of isolated DCCs, and
long-lived systems in the center.

d: changes in the diurnal cycle
strongly increase or decrease
net CRE

Lifetime and time of initiation determine the cloud radiative effect
distribution of deep convective clouds over Africa

Radiative Effect:
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detected in each a bimodal distribution,
1x1° grid box 7000 - with both peaks
consisting of isolated,
6000 - short lived DCCs. Long-
lived DCCs occur in the
center or warm extreme.
The negative mean is
due to a cold bias in the
radiative flux dataset

Method: Lifecycle:

Core detection frequency

LJ DCC motion is Mean anvil CRE

estimated using
optical flow. These
motion vectors are
used to construct a
semi-Lagrangian
framework.
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& We detect cores
where we observe
a cloud top cooling
by at least 8K in a
15 minute period,
signifying intense
convective growth.
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&d Due to their
large area and long
lifetime, multi-core
systems dominate
the total anvil
e n B M | R coverage, despite
R AT e, 5o B J‘ being few in
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&d Comparing the time
of detection and CTT
shows that for all but the
coldest (and longest

o lived) DCCs, the diurnal
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Ld Associated anvil
cloud regions are
detected around the
cores. Segmenting
In both time and
space, we detect
anvils even after
the core has
dissipated.
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Summary:

The distribution of tropical DCC CRE is determined by the shortwave CRE of
isolated, short-lived DCCs occurring during the day- and nighttime. Changes
to the diurnal cycle of convection — e.g. due to changing temperature or
aerosol radiative effects — may lead to shifts in the overall CRE balance.
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