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1) The importance of optimizing survey designs
Optimized Experimental Design (OED) aims at enhancing the efficiency and precision of 
data collection by maximizing the information content of data sets while limiting acquisition  
expenses and uncertainties.

OED commonly assumes that the quantitative benefit of a (geo)physical experiment is 
proportional to the resolution or accuracy of the parameters of interest.

Overall goal is to increase the benefit of a survey, before the actual measurement is conducted 
by improving the survey design based on the goals of the specific field campaign.

2) Methodology and workflow

3) OED strategies for transport process monitoring
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monitoring subsurface fluid transport processes over different time scales.

incorporating uncertainties of different physical properties into the optimization process.

A broad variety of OED approaches exist for different geophysical methods that were designed 
and tested in numerous past studies (e.g., Wagner et al., 2015, Uhlemann et al., 2018). However, 
utilizing OED algorithms to optimize surveys for fluid transport process monitoring over time 
has not been investigated yet. Due to its sensitivity to fluid saturation and temperature changes, 
Electrical Resistivity Tomography (ERT) is an important geophysical tool in this context. This 
study presents a novel concept for OED strategies for ERT surveys that aims at:

The “Compare-R” method (Wilkinson et al., 2012) is utilized as base for the optimization algorithms applied in the context of subsurface fluid 
transport monitoring. The approach is based on the resolution matrix of a linearized Gauss-Newton solution for an ERT problem, which is 
defined as:

where G is the Jacobian matrix and C the Constraint matrix. The main diagonal elements of R describe the resolution of each model cell j and 
range between 0 (unresolved) and 1 (perfectly resolved). Optimizing an ERT dataset is an iterative process that starts from a small set of base 
measurements b and adds n new measurements per iteration that hold the highest benefit for the parameters of interest. New configurations are 
chosen from a dataset containing possible add-on measurements (comprehensive dataset c). Every iteration includes the following steps:

Weighting factors wt,j based on concentration 
distribution at tn.
Accounts for parameter uncertainties of transport 
model by evaluating m model runs with varying input 
parameters.
wt,j incorporates probability of exceeding predefined 
fluid concentration during m model runs into ranking 
function of OED approach.

Calculate change in 
resolution matrix of 

the base set ΔRb

Weighting factors wt,j are chosen based on resistivity 
distribution in inverse model of previous monitoring 
time tn-1.
Survey focused on model regions where change of 
electrical resistivities at tn-1 is observed.
Focusing of survey might be spatially delayed, since 
mask corresponds to parameter distribution of tn-1.

Survey focusing and uncertainty estimation similar to 
model - driven approach.
The inverse model of resistivity distribution at tn is 
compared to simulated resistivities of same time step.
If inverse model deviates from predicted distribution 
at tn, the simulation parameters for later time steps 
are adapted to refine the transport model predictions 
(Transport parameter evaluation).

Fig. 1 a): Cost  - benefit diagram of a standard and an optimized ERT survey including the relative model 
resolution Rr. Rr represents the resolution capacity of the shown datasets normalized by the resolution of the 
comprehensive dataset. The latter contains the maximum possible number of four-point configurations for 
the chosen survey geometry. 
Fig. 1 b): Corresponding plot of the relative model resolutions for both sets using 20 electrodes with  
2.5 m spacing.

Fig. 2: True model and comparison of tomograms for the comprehensive, a standard Dipole-Dipole 
and a CR-optimized dataset.

Fig. 3: Model-based OED approach using a weight distribution (middle) based on m transport model realizations for the current monitoring 
time step with varying simulation parameters (e.g. varying hydraulic conductivity). The left image displays the fluid concentration distribution 
at time tn, the right image shows the inverse model of the optimized dataset including the Pearson number P as quality evaluation criterion.

Fig. 4: Data-driven OED using a focusing method based on the inverse ERT model of the previous time step (left). The right image presents the 
mask that is created using the inverse model of the resistivity distribution at time tn (middle). The resistivity distribution at time t is evaulated using 
the Pearson coefficient P.

Fig. 5: Hybrid OED using a transport simulation-based focusing including 
uncertainties for the current monitoring time step based on m model runs. 
After each iteration, the inverse electrical resistivity distribution is compared 
to the simulated distribution and the transport simulation parameters are 
adapted if a deviation is detected.

a) Model-driven approach:

b) Data-driven approach:

c) Hybrid approach:

Rank possible add-on configurations according to their 
benefit considering the weighting factor wt:
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To visualize the OED strategies, a diffusive-advective tracer transport is simulated in a 2-layer geometry. All 
three presented approaches are applied to optimize ERT measurements at a single monitoring time tn.
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