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Area of Applicability (AOA)1

● The area of applicability (AOA) builds the baseline for the conception of the local data point 
density (LPD) approach

● Methodology in the context of spatial prediction models by Meyer and Pebesma (2021)
● Goal: Outline the regions in a target area where a model’s predictions can be considered 

reliable according to the cross-validation performance of the model
➔ Inside the AOA the cross-validation performance of the model holds on average
● How it works: The authors calculate a dissimilarity index (DI) that measures how different a 

new location is from the training data points in the multidimensional predictor data space
➔ The AOA is derived by applying a threshold on this DI based on the models cross-validation 

performance
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Figure 1: (a) Training samples 
that were incorporated in the 
machine learning model. (b) DI 
of the prediction locations in 
the target area. (c) `Species 
richness` predicted for South 
America based on a machine-
learning model. Orange regions 
are outside the AOA. 

(Source: Own representation)
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Why LPD?

● Dissimilarity index (DI) of a new prediction data point only calculated based on the nearest-
neighbor in the training data
➔ Local training data point densities not considered

Problem: 

Inside the AOA is not possible to discriminate between areas in the predictor space where few, 
or even one isolated training data point is nearest and a predictor space location that is 
densely covered by training data points (see Figure 1)

Assumption:

We assume that local training data point densities can be highly decisive for the uncertainty of 
predictions 
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Figure 2: Hypothetical 2-
dimensional scaled and 
weighted predictor data space 
with training data and new 
prediction locations to show 
limitations of the AOA using a 
classification example. It is 
assumed, that all new 
prediction locations fall within 
the AOA, i.e. their DI value is 
smaller than the threshold 
calculated from cross-validated 
training data.

(Source: Own Representation)



  

Our method - LPD

● Newly developed local data point density approach (LPD) based on the given concepts of the AOA method

➔ Allows for a better assessment of the area of applicability of a model and the training data coverage of 
different regions in the target area

● Quantitative measure for a new prediction data point that indicates how many similar training data points 
(in terms of predictor values) have been included in the model training (see Fig. 2)

➔ A training data point is considered similar if it defines a new data point as being within the AOA, i.e. the 
model is considered applicable for the corresponding prediction location

● Using the relationship between the LPD and the models cross-validation performance to express 
prediction uncertainty

Can be seen as a first approach towards including local data point densities in the validation of spatial 
mapping workflows
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Figure 3: The DI is calculated by 
dividing a distance in the 
multidimensional predictor data 
space through the average mean 
distance between the cross-
validated training data. Since the 
AOA threshold is defined as the 
outlier-removed maximum DI of 
the training data, we can 
transform it back into a 
respective distance in the 
predictor space. (a), (b), and (c) 
clarify when a training data point 
is included in the LPD.

(Source: Own representation)



  

How did we test the method?

To show how and when the LPD can be beneficial in a spatial modelling 
workflow, we performed a simulation study and a case study
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Simulation study

3 prediction tasks were simulated with a known response variable
Predictors: 19 bioclimatic variables from the Worldclim2 dataset
Response: Simulated via principle component analysis (PCA) with the variables bio2, bio5, bio10, bio13, 
bio14, and bio19
Sampling: 3 sampling scenarios (random, clustered, biased with outlier) with 100 samples
Models: Random Forest (RF) model for each sampling scenario
Validation: Cross-validation (CV) designed in line with the sampling distributions (Random CV, Spatial-Leave-
One-Cluster-Out CV, and kNNDM3 CV)

 → make predictions and calculate DI, LPD and AOA
Analytics: 
● LPD ~ DI
● LPD ~ True absolute error/RMSE 
● LPD ~ Standard deviations of the random forest ensemble 
● DI/LPD from CV ~ CV performance (RMSE)
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Figure 4: (a) The 19 predictor 
variables from the Worldclim 
dataset and the response variable 
used in the simulation study. All 
grids were cropped to the area of 
Europe and stretched from 0 to 1 for 
better visualization. (b) The three 
different sampling designs used in 
the simulation study (random, 
clustered, biased with outlier).

(Source: Own representation)
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Case study

Predicting ‘species richness’ for the whole of South America
Predictors: 4 bioclimatic variables from the Worldclim2 dataset and elevation selected by forward feature 
selection (FFS)
Response: Only available for sampling locations – not the for the whole target area
Sampling: 703 sampling locations derived from the sPlotOpen5 dataset
Models: Random Forest (RF) model with forward feature selection (FFS)4

Validation: kNNDM3 CV
 → make predictions and calculate DI, LPD and AOA

Analytics: 
● Visual and value-based assessment of the LPD
● LPD ~ Standard deviations of the random forest ensemble 
● DI/LPD from CV ~ CV performance (RMSE) relationship
● Performance prediction from the relationship
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Figure 5: (a) The predictor variables 
chosen with by FFS during the 
model training. (b) The training 
locations visualized with the 
‘species richness’ response values 
(top) and the computed knndm 
folds (bottom).

(Source: Own representation)
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Case study - workflow
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Simulation study - results
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Figure 6: Local data point 
density (LPD) for the (a) 
random, (b) clustered, and (c) 
biased with outlier sampling 
design.

(Source: Own representation)



  

Simulation study - results
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Figure 7: The calculated LPD values 
of the prediction locations for each 
scenario plotted in data bins 
against their respective DI values; A 
generalized additive model is fitted 
to the data and shown as a red line 
for better visualization of the 
relationship. (a) is referred to the 
random, (b) to clustered, and (c) to 
biased with outlier sampling 
design.

(Source: Own representation)



  

Simulation study - results
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Figure 8: LPD values of the 
prediction location for each 
scenario plotted in data bins 
against the respective true 
absolute error values; The red 
line signifies the RMSE obtained 
from CV in each scenario and the 
black points show the RMSE for 
all prediction locations with the 
specific LPD value (see Table 
A1). (a) is referred to the random, 
(b) to clustered, and (c) to biased 
with outlier sampling design.

(Source: Own representation)



  

Simulation study - results
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Figure 9: LPD values of the 
prediction locations for each 
scenario plotted in data bins 
against the respective prediction 
standard deviations for the 500 
trees in the RF model; The black 
points show the mean prediction 
standard deviation for all 
locations with a specific LPD 
value (see Table A2). (a) is 
referred to the random, (b) to 
clustered, and (c) to biased with 
outlier sampling design.

(Source: Own representation)



  

Simulation study - results
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Figure 10: (a) Relationship between the 
error metric (RMSE) and the dissimilarity 
index (DI), (b) relationship between the 
error metric (RMSE) and the local data point 
density (LPD) all for the random sampling 
scenario; Each single data point 
corresponds to the RMSE from a sliding 
window of size 5, either along the DI axis or 
along the LPD axis. The 2- dimensional 
models are shown as a blue line. The true 
RMSE which was calculated using the 
reference map and corresponding 
predictions within the identical windows of 
DI and LPD values is shown in red.

(Source: Own representation)



  

Simulation study - summary

● For low LPD values the cross-validation performance of the model still tends to be exceeded, 
whereas for high LPD values the cross-validation performance is highly under cut (see Figure
➔ Assumption: Local data point densities have an impact on the models performance to a 

certain degree
● The standard deviations of the random forest ensemble decrease on average with increasing 

LPD values
➔ Assumption: Prediction uncertainty decreases with increasing local training data point 

densities
● There seems to be a relationship between the LPD and the models performance

➔ Assumption: We can use the LPD to carry out model performance estimation

Methods Discussion Conclusion How to use?Introduction Results



  

Case study – results
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Figure 11: Comparison 
between the (a) DI, (b) LPD 
and (c) prediction inside 
the AOA. Areas outside the 
AOA are shown in orange

(Source: Own 
representation)



  

Case study – results

0

20

40

60

0.1 0.2 0.3
DI

m
et

ric

cross−validation model

DI ~ metric (RMSE)(a)

0

30

60

90

120

0 30 60 90 120
LPD

m
et

ric

cross−validation model

LPD ~ metric (RMSE)(b)

Methods Discussion Conclusion How to use?Introduction Results

Figure 12: (a) Relationship between the 
error metric (RMSE) and the dissimilarity 
index (DI), (b) relationship between the 
error metric (RMSE) and the local data point 
density (LPD) for the random sampling 
scenario; Each single data point 
corresponds to the RMSE from a sliding 
window of size 5, either along the DI axis, 
along the LPD axis, or both axes (in this 
case mean RMSE is used). The 2-
dimensional models are shown as a red 
line.

(Source: Own representation)



  

Case study – results

Outside AOA

20

30

40

50

RMSE

DI predicted RMSE

(a)

Outside AOA

20

30

40

50
RMSE

LPD predicted RMSE

(b)

Outside AOA

10

20

30

40

50

RMSE

DI and LPD predicted RMSE

(c)

Methods Discussion Conclusion How to use?Introduction Results

Figure 13: Comparison of the 
model performance (RMSE) 
predictions inside the AOA by 
the (a) DI, (b) LPD, and (c) DI + 
LPD error model.

(Source: Own representation)



  

Case study - summary

● Low local training data point densities (low coverage by the training data) are not reflected 
with the dissimilarity index (DI)

● A relationship between LPD and model performance is also noticeable for ‘real-world’ data 
which enables area-wide performance estimation
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Discussion

● Low training data point densities do not necessarily lead to poor prediction results , but merely 
increase the probability of a poorer result (higher uncertainty)
➔ The presence of a single or a few data similar data points can be sufficient

● DI is dependent on the cross-validation strategy of the model, hence also the LPD
➔ Cross-validation needs to be designed in line with the sampling distribution
➔ Relationship between LPD and model performance can be determined

● Including LPD for the delineation of the AOA or using it for outlier-caused AOA detection?

Methods Results Conclusion How to use?Introduction Discussion
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Figure 14: Detection of outlier-caused AOA on the example 
of the biased with outlier sampling scenario; (a) shows the 
LPD with the sampling locations, (b) shows the regular 
AOA, and (c) shows an LPD-dependent AOA with a 
minimum LPD of 2 as an additional AOA condition.



  

Discussion

● Deriving an combined uncertainty measure from the DI and LPD
➔ Needs further investigation to see if a combined uncertainty measure from DI and LPD 

values is meaningful to estimate model performance
● Computation times:

➔ For large training and prediction data sets the LPD has high computation times
➔ Limiting the LPD to user defined maximum of neighbours to be considered can help not 

having to forego density information, but disables the estimation of the model performance
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Conclusion

● The LPD is a quantitative density measure that can provide important additional information, 
where in the target area the training data coverage is too low or significantly lower than in 
surrounding areas

● The LPD can be used to provide estimates of model performance in the target area
● We suggest communicating the LPD in a spatial prediction mapping workflow and alongside 

the DI and AOA

➔ Can be a further gainful factor in the critical assessment of overly optimistic data-driven 
prediction maps
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How to use the LPD?

● Methods are implemented inside the aoa function in the CAST R package on CRAN
AOA = aoa(newdata = newdata, model = model, LPD = TRUE)

• A method for visualizing and exploring the DI, LPD and AOA interactively is implemented in the 
CASTvis R package on GitHub
exploreAOA(aoa = AOA)

● Further information can be found under:
● https://cran.r-project.org/web/packages/CAST/index.html
● https://github.com/HannaMeyer/CAST 
● https://hannameyer.github.io/CAST/articles/cast04-AOA-tutorial.html 
● https://github.com/fab-scm/CASTvis 
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https://cran.r-project.org/web/packages/CAST/index.html
https://github.com/HannaMeyer/CAST
https://hannameyer.github.io/CAST/articles/cast04-AOA-tutorial.html
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