Advances In the Identification of Geological Discontinuities
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1 Introduction

Geological discontinuities define and impact
rock mass behaviour. Manually collecting this
information is time-consuming, labor-intensive,
and subjective. A faster, standardized, and
automated approach is needed.
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Fig 1. Borehole 3d model.

) Research Goal

Develop a deep learning model for pixelwise
identification of various geological structures.
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Fig 2. Example of our manual labeling used as ground truth to train
the model. Red: tectonic fault plane; Green: induced crack; Blue:
breakout; Pink: fault zone; Black: fault gouge.

5 Insights & Implications
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Ground truth

" Does the model see what geologists see? And ‘
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Fig 3. Workflow of semantic segmentation on borehole imagery. The original borehole image has the size of 46436 x 7091 pixels. Due to computational limitations, it is divided into smaller
tiles for model inference. The predictions from each tile are then stitched together to reconstruct the full segmentation map.

Can deep learning contribute to monitoring rock \

Quantifying borehole damage ’

For breakout: calculate the total mass behaviour?

Fig 7. Comparison of multi-scale model predictions using different tile sizes. Prediction:
Output from the trained model. Residual: Differences between manual labels and model
predictions, green area indicates agreement, magenta area indicates disagreement.
Uncertainty: Pixel-wise confidence of the model, brighter colors represent higher

> _ uncertainty.
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Fig 8. Skeletonize of the prediction. The left one is the
orginal image. The middle one is the prediction from
our model. The right one is the skeleton of induced
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Fig 9. Temporal evolution of induced cracks and breakouts. The left plot shows the total
lengths of induced cracks over time. The right plot illustrates the evolution of breakout areas.
Fully developed breakouts refer to regions with clear volume loss, while incipient breakouts are
visibly disturbed areas that may experience volume loss in the future.
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Fig 5. Confusion matrix of the prediction.

Intact wall shows high recall.
* Tectonic faults tend to be misclassified
as Intact wall.
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Fig 6. Intersection over Union (IOU) score per class over
different tiling size for training and testing.

Larger tiles capture fault zones better,
smaller tiles improve crack detection.

Main Takeaways

1. Tiling size is critical in training and
prediction.

2. Class imbalance can hinder
performance but is addressable through
good training strategies.

3. Deep learning models offer efficient,
consistent segmentation and can reveal
features missed in manual labeling.

4. Future study will focus on
generalization to various geological
settings (e.g., typical borehole images /
3D tunnel faces data).
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