Drivers of Ice Shelf Basal Melt on Pine
Island Glacier: Ocean vs Geometry?
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shelf buttressing capacity

Ocean conditions largely control temporal variability (r = 0.98).
Geometric changes only impact the temporal variability of melt
by 10% but impact buttressing by 24%.
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Fig 4: The change in the spatial distribution of ice shelf melt rates between 2011 and 2021
for OCEAN and DEM model runs.
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