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Global ionospheric maps (GIMs) are widely used ionospheric 

products, especially in Global Navigation Satellite System 

(GNSS) applications, as they allow for instance to correct for the 

ionospheric delays in single-frequency applications. The global 

distribution of GNSS data used to describe the ionospheric state 

is heavily limited to continental regions, leaving oceanic areas 

with major data gaps. Combining ionospheric estimates from 

different space geodetic techniques such as GNSS, GNSS 

radio occultation (GNSS-RO) and satellite altimetry we can 

improve the GIM quality in regions without GNSS observations.

• Global GNSS data from the International GNSS Service (IGS) 

network.1

• GNSS-RO data from the University Corporation for 

Atmospheric Research (UCAR) of the Constellation 

Observing System for Meteorology Ionosphere and Climate 

(COSMIC-2) mission.2

• Satellite altimetry data from National Oceanic and 

Atmospheric Administration (NOAA) of the Jason-3 mission.3

• Missing GNSS data significantly reduces the performance of 

VTEC modelling.

• Using samples from the background model can help mitigate 

this error to some extent.

• Adapting the loss function can lead to more realistic 

uncertainty predictions in oceanic areas.

• Background modelling will continue to be optimized and 

evaluated.

• Neural network (NN) based GIM consisting of 10 ensemble 

members.4

• Loss function according to Laplacian deep ensembles which 

enables to output the predicted value with an estimated 

uncertainty.5
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1 Introduction

Figure 1: Distribution of Ionospheric observations from different observation techniques for 2024-08-

09. Marked in green are the three test regions Hawaii (1), Atlantic (2) and Antarctic (3).
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Region Local GNSS 

included

No local GNSS, no 

Background

No local GNSS, with 

Background 

Hawaii 1.64 10.59 6.66

Atlantic 2.29 6.27 5.74

Antarctic 0.92 7.22 4.85

Table 1: VTEC MAE [TECU] for the three test regions by including the local GNSS data into the GIM 

modelling, excluding local GNSS data, and excluding GNSS data but using background model 

samples. 

Figure 2: Distribution of Ionospheric observations from Jason-3 and COSMIC-2 over a time period of 

80 days used to construct a background model for a specific day.

Station(Region) Local GNSS 

included

No local GNSS, no 

Background

No local GNSS, 

with Background 

MKEA (Hawaii) 2.67 4.89 3.52

KOKF (Hawaii) 2.12 4.26 3.09

STHL(Atlantic) 2.09 2.45 2.25

ASCG(Atlantic) 3.44 4.36 3.88

CZTG(Antarctic) 1.47 2.26 2.06

KRGG(Antarctic) 2.01 2.59 2.36

KERG(Antarctic) 1.56 2.20 1.96

Table 2: Single point positioning 3D MAE [m] compared to a dual frequency solution. Evaluated for 

stations of the test regions for a case with included local GNSS data, no local GNSS data and a case 

where missing local data is compensated with data from the background model.
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Pipeline to fill data gaps with additional data:
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