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Pairing these textures and mineral compositions with phase equilibrium modeling with PerpleX

Metamorphic epidote-rich zones may represent constrains a range of P-T conditions for the growth of the two generations of minerals.
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as a result of intial compositional heterogeneity.

Mantle wedge

0 10 km

Catalina Schist

Il Mélange dominated metasomatic

[ Coherent metamafic X subduction 15
Il Epidote Amphibolite Facies f& interface . X 1.5
I Epidote Blueschist Facies - um e”yite reacts to form — Ep
Lawsonite & albite blueschist S p . p o S f H b|
Jurssic? - epidote and release H,O lapfu
M Altered Gabbro Vol k dehydration
1 18”2.5'W 1 18°2.0' W related
map after Platt, 1975; crossection adapted from Platt and Schmidt, 2024, Tectonics fluids
Epidote Amph;t:cr:l&; ....... 99?5_:_?2} ___________ N DOWﬂgOing Slab
::::::m ———————————————— adapted from Easthouse et al., submitted 1 O i 1 O ]
LwsBueschist ———— o The Ep2 fleld IS deflned by .
X X X o o, ® © ©
— e s epidote compositions and the @ & i
Si-content of hornblende. The J§ ~ o

Ep, field is defined by epidote
compositions, and the stability
of actinolite and albite.

epidote
vol. %

30
20
10

Records of seafloor alteration epidosites record hydration

of oceanic crust prior to

, :
. ' . subduction Comf(,eopsgizf.,es not Ep2 represents near-peak 200 400 ) 600 800
Pillow and hyaloc|a§tlte breccia Pumpe”yite to epidote dehydration preserved) epidote compositions
textures are preserved in parts of the D reactions result in a pulse of water X 4
epidote amphibolite metabasalts. North America release arolnd 250200 @ The abundance of epidote is predicted to decrease with increase temperature, which

S o helps explain the presence of Ep, as relic cores that are then overgrown by Ep..

=

Networks of interpillow material are
commonly epidote rich and we
interpret these as having been altered
to epidosite. etamonhic

Epidote 2 therefore represents the composition of epidote at ~peak P-T conditions,
while growth of more Al-rich epidote 3 with actinolite suggests retrograde cooling.

future ep. amph. unit R

epidote growth

reaches a peak
around 400°C et .

North America

I e

interpi%vv

epidote-rich eoidlostie 10 ¢
Strongly negative Ce anomalies in - L p\ 4 - porpiRisrtgepidgte Epee
) . hig . ; :
epidote from these zones are / i North America with increasing T to peak y iEEhPattemzfor epidote Pohrpgyroblasts |
indicative  of  interaction  with DI conditions the volume % (both Ep, and Ep,) are enriched in LREEs 1oy
SR : relative to epidote-rich networks (Ep.). |
seawater. \ < j epidote decreases and 1
' \ epidote befomes more £ 10
' .\ Fe-rich :
o _ North America e With progressive metamorphism, 3
E 22L09H2 - epicasite epidote porphyroblasts likely = 10¢
0708 —— : H o fl uxes \ S preferentially mcorpor.ated more | Ep1 REE patterns
100 I o 2 LREE from other reacting phases —t—|22¢10B2 L]
o ; . . . v
: | . 0707 ~ -l D while the epidote-rich networks InSEriaE il
c Bulk-rock Sr isotope . < o . ' N North America do not communicate as much | —e— 22C09A2 ep3
5 measurements .prowde 0706 5 thflse equlllbrlurn modeling also predicts the conditions at with the matrix. A I A
< another indication of I which pumpellyite would have broken down to produce \
i intial seawater-rock g I epidote (1) and allows us to estimate how much H2O this
& - 't d & 751/%S1 for ep. 05 : Iq d \ Retrograde Ep2
Interactions, an 5 070a) L pibolites reaction would proauce. growth around Ep1

This transition is associated with a release of ~94 kg H,O/m? of fri tion followi
basalt, which, to first order, could result in fluxes of 10*-10° kg redrlgelra. QIS Og\,,;,ng

H,O/m?/Myr in the region of such dehydration in a generic Uncierpiatingiiers e \
more epidote (Ep,)

200 400 600 soo sudbuction zone.
0.701 T (°C)

\Y/ I
2 \/ suggest potentially

1 \/\/\/__/ large water/rock ratios 0703
: 1 1o prior to subduction.

0.702

107 L

La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu




