The role of extratropical cyclones in flooding in Quebec, Canada, from 1991 to 2020

climate event in the history

→ Storm 19145

→ Storm 19159

Storm 19152

Clarence Gagnon^{A,1}, Daniel F. Nadeau¹, Alejandro Di Luca², François Anctil¹, Benoit Brault¹, Romane Hamon¹, Nicolas Roy¹, Marc-André Bourgault³

UNIQUE ASPECTS

First study of its kind in Quebec

between 1991 and 2020

Climate Change

24 25 26

rainfall and important dates.

Figure 1: (Top): Storms around Center-of-Quebec

Date Q2- and Q2+ refer to times the rising and falling limbs of

the hydrograph cross the 2-year average river discharge

watershed (outlined in blue) present in the boundary,

during flooding of August 2011. (Bottom) Associated

Systematic study of all known floods

Increase of rainfall extremes associated with ETCs (2)

Heavy rainfall from spring flood of 2017 3x more likely (3)

^APresenting author, Master student in Water engineering

¹Department of Civil and Water Engineering, Laval University, Québec, Canada

Data & Methods

ERA5 Reanalysis

Precipitation data

Global Atmospheric

River (AR) Scale

database (8)

North America

Extratropical Cyclone

(NAEC) Catalogue (9)

Financial aid claims are

Physical and temporal

ERA5 precipitation is

boundaries for data search

associated with ETCs and ARs

ETCs are classified by genesis

location and involvement in

Flood-contributing ETCs are

compared to non-flood-

contributing ETCs

of occurrence

are set

flooding

grouped by location and time

²Department of Earth and Atmospheric Sciences, UQAM, Montréal, Canada

³Department of Geography, Laval University, Québec, Canada

Introduction

RESEARCH OBJECTIVE

Evaluate the contribution of extratropical cyclones (ETCs) and atmospheric rivers (ARs) to flooding in Quebec between 1991 and 2020 through three steps

1- Identify floods

SOURCES OF DATA

KEY STEPS

Define

flooding

Id flood-

ETCs

Classify &

compare

ETCs

contributing

Quebec flooding

- 2- Quantify the contribution of ETCs and ARs to floods 3- Characterize ETCs in terms of contribution and
- origin

Nov

75% of floods occur in spring

- 479 flood events were identified at the watershed scale
- ❖ 11.5% of floods occur in fall. 9.8% in summer, and 4.2% in
- The 479 floods can be grouped into 82 meteorological events

Number of financial aid claims

Figure 2: Meteorological flood events

between 1991 and 2020 with their

associated number of watersheds

affected and financial aid claims

20-35

Number of watersheds affected per

meteorological event

• 1-5 • 5-10 • 10-20

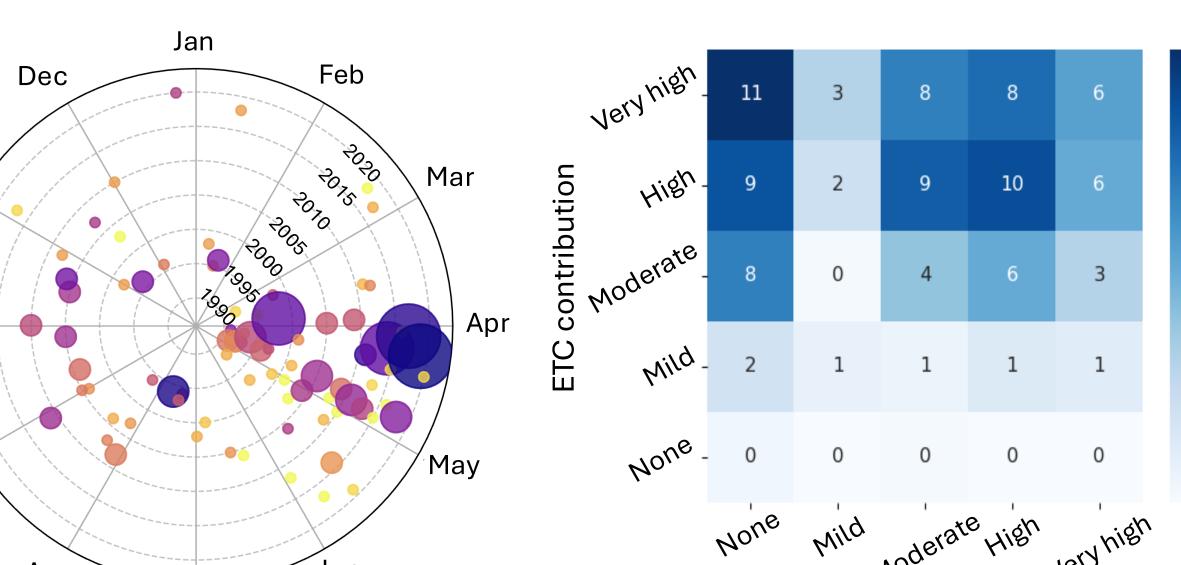
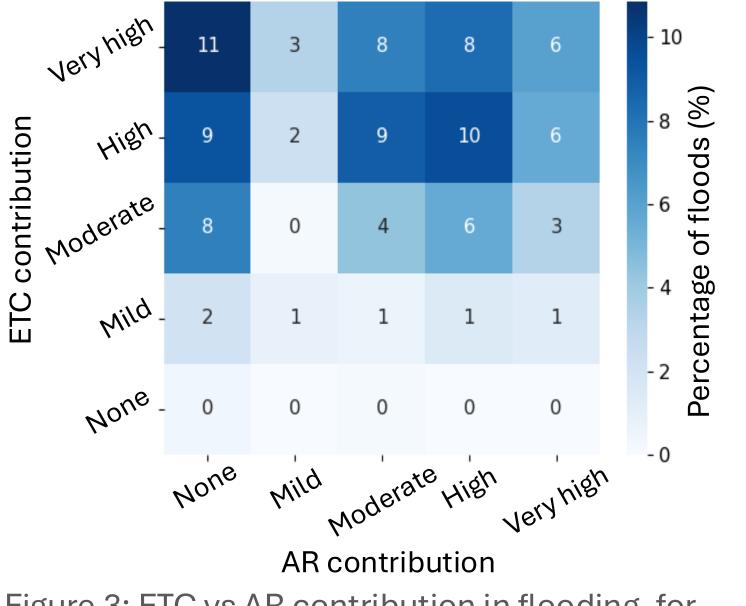


Figure 3: ETC vs AR contribution in flooding, for all 479 flood events analyzed, indicated in percentages, where None refers to no contribution

Table 1: Cumulated rainfall association necessary for the different contribution levels given to ETCs and ARs during flooding

Percentage	(n 251	(25, 50]	(50 751	(75 100)
range	(0, 20]	(23, 30]	(50, 75]	(75, 100]
Contribution	mild	moderate	high	very high


ETCs are highly responsible for floods +

High or very high contribution

- ❖ In 72% of floods for ETCs
- ❖ In 41% of floods for ARs

At least a mild contribution

- ❖ In 100% of floods for ETCs
- In 70% of floods for ARs

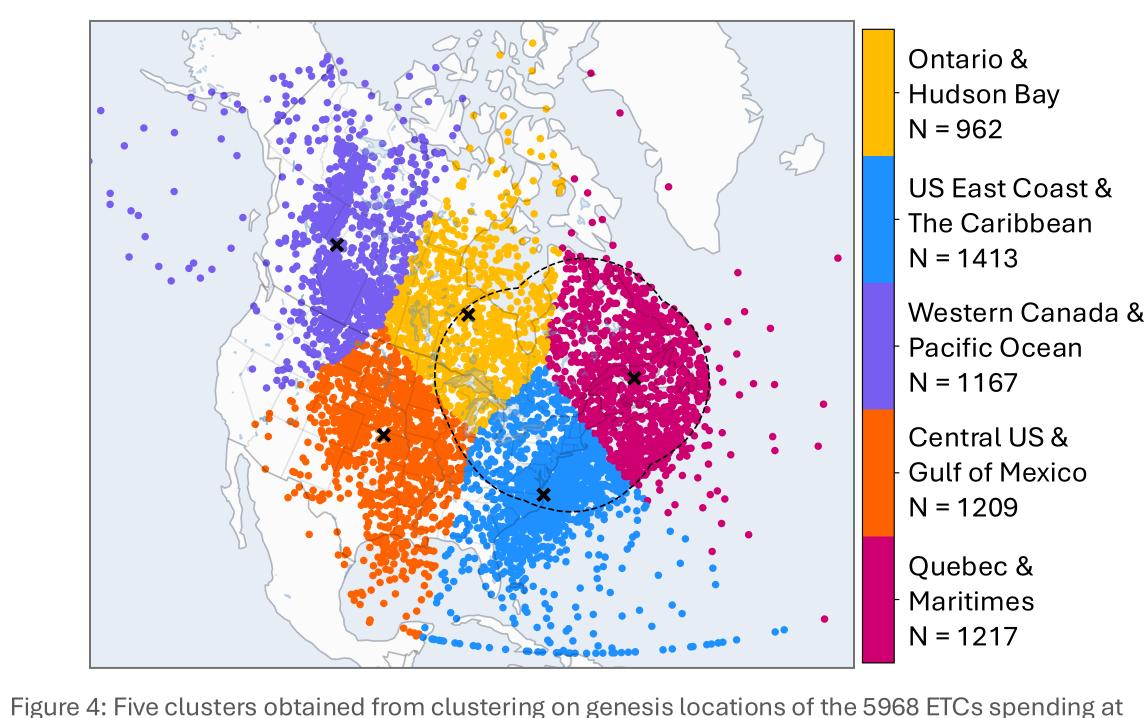
Percentage range	(0, 25]	(25, 50]	(50, 75]	(75, 100]
Contribution	mild	moderate	high	very high

Cyclogenesis of flood-contributing ETCs restricted to two main regions

54% of financial aid claims

can be linked to just four

The number of financial aid claims associated


❖ 90% of all financial aid claims were associated

with flood-contributing ETC varied greatly

Results

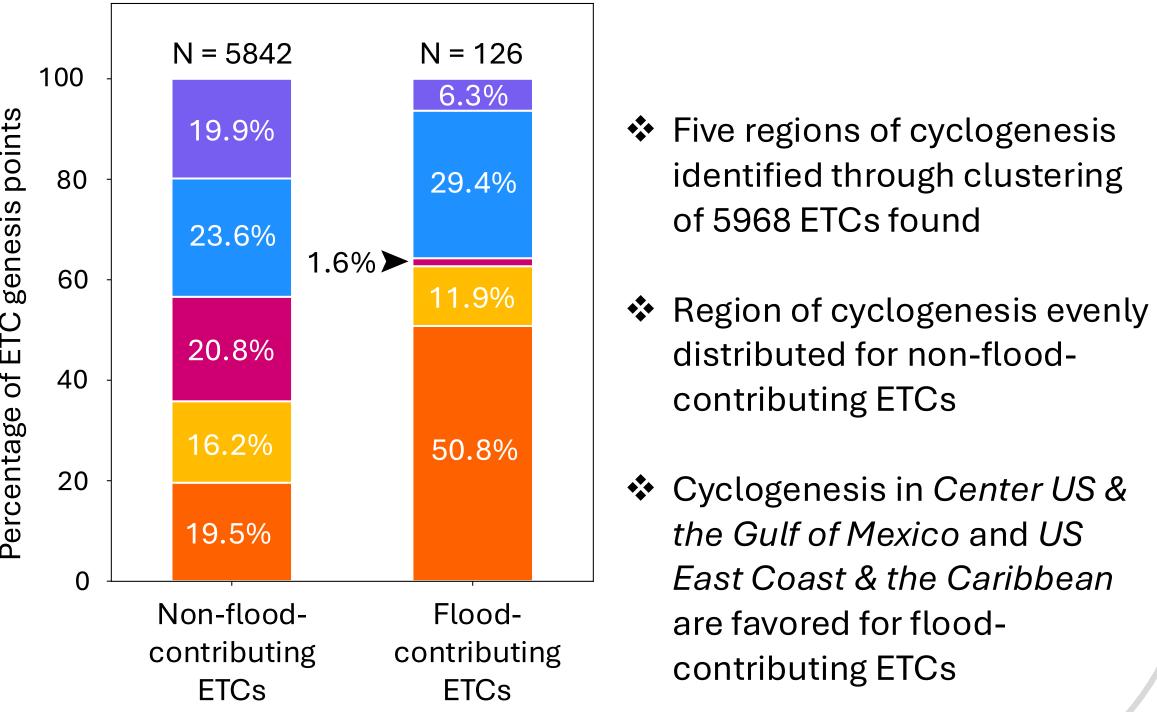
storms

with 23 out of 126 storms

least 1h in the dashed black domain between 1991 and 2020

identified through clustering

distributed for non-flood-


the Gulf of Mexico and US

East Coast & the Caribbean

are favored for flood-

of 5968 ETCs found

contributing ETCs

for flood-contributing and non-flood-contributing ETCs

contributing ETCs Figure 5: Comparison of genesis location distribution

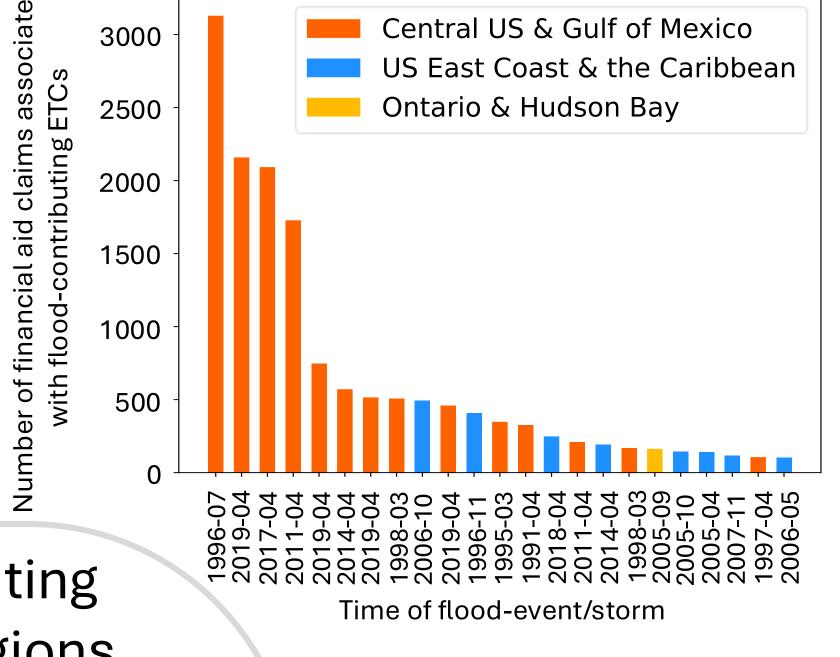
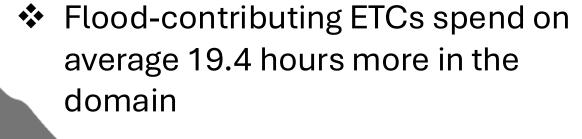
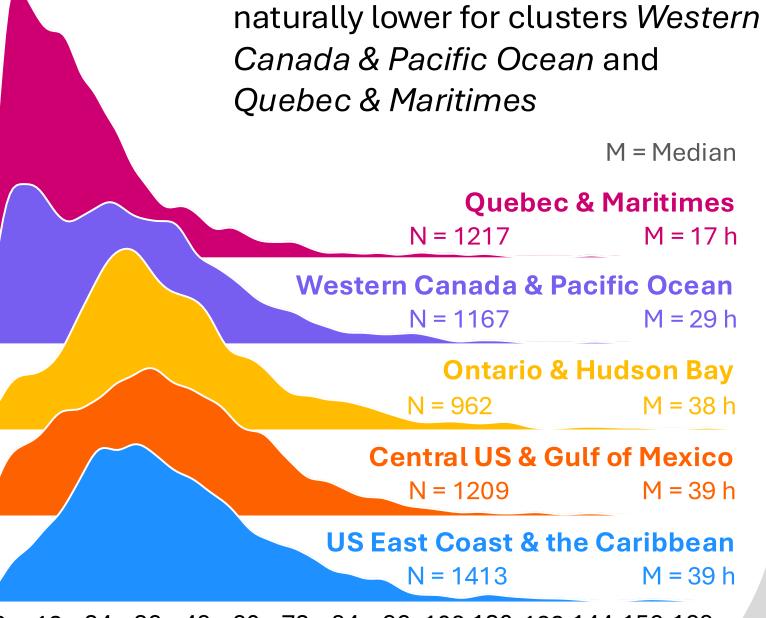



Figure 6: Financial aid claims associated with flood-contributing storms and their provenance

Flood-contributing ETCs spend more time in the domain



Flood-contributing ETCs

N = 1260 12 24 36 48 60 72 84 96 108 120 132 144 156 168

Lifetime in domain (hours) Figure 7: Distribution of lifetime in domain, by type of storms (flood-

contributing or not) Average time spent in the domain is

0 12 24 36 48 60 72 84 96 108 120 132 144 156 168 Lifetime in domain (hours)

Figure 8: Distribution of storms lifetime in domain, by genesis

Discussion & Conclusions

DISCUSSION

- Financial aid claims data skewed towards higher population density
- Added vulnerability to flooding in the spring due to snowmelt
- Heavy contribution of Colorado lows and Hatteras low in flooding/extreme events in Eastern North America agrees with other studies in Eastern watersheds (2, 10, 11)
- Longer lifetime in the domain is expected for ETCs forming outside the domain

MAIN FINDINGS

Between 1991 to 2020 in Québec, Canada:

- Most flooding happened in the spring
- **ETCs** were heavily involved in flooding, and favored cyclogenesis in Center US & the Gulf of Mexico and US East Coast & the Caribbean
- Flood-contributing ETCs spent more time in the domain
- Atmospheric rivers were involved in flooding most of the time

Outstanding Student & PhD

candidate Presentation contest

CONTACT & LINK TO ABSTRACT clarence.gagnon.1@ulaval.ca linkedin.com/in/clarence-gagnon-03618717a

REFERENCES

- Bureau d'assurance du Canada. (2024, September 13th). Événement météorologique le plus couteux de l'histoire du Québec: les inondations d'août causent près de 2,5 milliards de dollars de dommages assurés. Bureau d'assurance du Canada (BAC). https://fr.ibc.ca/news-insights/news/the-costliest-severe-weather-event-in-quebecs-history-august-flooding-caused-nearly-2-5-billion-in-insured-damage
- 2. Kunkel, K. E., et al. (2013). Monitoring and understanding changes in extreme storms: State of knowledge. Bull. Amer. Meteor. Soc., 94, 499–514, doi:10.1175/BAMS-D-11-00262.1.
- 3. Teufel, B., Sushama, L., Huziy, O., Diro, G. T., Jeong, D. I., Winger, K., Garnaud, C., De Elia, R., Zwiers, F. W., Matthews, H. D., & Nguyen, V.-T.-V. (2019). Investigation of the mechanisms leading to the 2017 Montreal flood. Climate Dynamics, 52(7–8), 4193–4206. https://doi.org/10.1007/s00382-018-4375-0
- 4. Roy, N., Hamon, R., & Anctil, F. (2024). Base de données d'évènements d'inondation survenus au Québec entre 1990 et 2023 (EVE). [Projet REX-PHY, Université Laval].
- 5. Lachance-Cloutier, S., Turcotte, R., & Cyr, J.-F. (2017). Combining streamflow observations and hydrologic simulations for the retrospective estimation of daily streamflow for ungauged rivers in southern Quebec (Canada). Journal of Hydrology, 550, 294-306. https://doi.org/10.1016/j.jhydrol.2017.05.011 6. Lehner, B. & Grill, G. (2013). Global river hydrography and network routing: baseline data and new approaches to study the world's large river systems.

Hydrological Processes, 27(15): 2171–2186. https://doi.org/10.1002/hyp.9740

- 7. Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Climate Data Store (CDS), DOI: 10.24381/cds.adbb2d47 8. Guan, B. (2023). "[Data] Global Atmospheric River Scale Database", https://doi.org/10.25346/S6/MQRHJE, UCLA Dataverse, V1
- Simmons, A., Soci, C., Dee, D., & Thépaut, J-N. (2023): ERA5 hourly data from 1991 to 2020. Copernicus Climate Change Service (C3S)
- Catalogue", https://doi.org/10.5683/SP3/LH8OBV, Borealis, V3

9. Chen, T-C., Di Luca, A., & Winger, K. (2022). "North America Extratropical Cyclone (NAEC)

- 10. Bentley, A. M., Bosart, L. F., & Keyser, D. (2019). A Climatology of Extratropical Cyclones Leading to Extreme Weather Events over Central and Eastern North America. *Monthly Weather Review*, 147(5), 1471–1490. https://doi.org/10.1175/MWR-D-18-0453.1
- 11. Smith, J. A., Baeck, M. L., Villarini, G., & Krajewski, W. F. (2010). The Hydrology and Hydrometeorology of Flooding in the Delaware River Basin. Journal of Hydrometeorology, 11(4), 841–859. https://doi.org/10.1175/2010JHM1236.1

