Effect of Residue Application Methods and Long-Term No-Tillage Management

on Residue Decomposition and Priming Effect in Japanese Andosol: Evidence from a Field Incubation Experiment

Daniel Asiamah Aboagye¹, Han Lyu², Hideaki Yasuno¹, Masakazu Komatsuzaki³, Haruo Tanaka², and Soh Sugihara²

United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan (daaboagye003@gmail.com) 2Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan 3Centre for International Field Research, Ibaraki University, Ibaraki Japan

Introduction

- ☐ No-tillage (NT) is an important soil management practice with proven potential for improving SOC stocks in Andosols as observed from long-term experimental trials within humid subtropical climate of Japan.
- ☐ However, NT has been associated with increased CO₂ emissions in Andosols raising questions about its mechanisms and effectiveness for C sequestration.

The study aimed to assess how residue application method and long-term NT management affect residue mineralization, SOC dynamics and priming effect through in-situ incubation experiment using 13C-labelled plant residues in Japan

Conclusion

A Rotary (CT)
No-till (NT)

Leaf part

13C 15N Rye

Two control groups →

NT and CT without

- ☐ Residue application method, not long-term NT legacy, influenced residue mineralization.
- CTSA (surface application/ disturbance) increased mineralization and P.E., likely due to a larger positive relative MBC changes.
- ☐ CTMIX (residue mixing) reduced mineralization, possibly due to enhanced residue mineral adsorption after
- Long-term NT likely contributed to stable MBC following surface residue application, leading to reduced SOC priming response \rightarrow potential for C stabilization.

Materials and Methods

3 Tillage treatments

NT CT

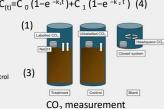
Plant Residue (13C- labelled)

Size - <5mm Crop - Rve grass

13C = 7 atm% Applied rate = 2 kg C m⁻²

Centre for International Field Research, Ibaraki University, Japan est. 2002, Soyabean x Cover crop rotations

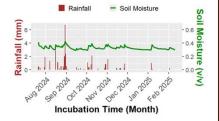
Indisturbed soil sampling involved arefully extracting intact soil cores from no-till systems to preserve natural soil

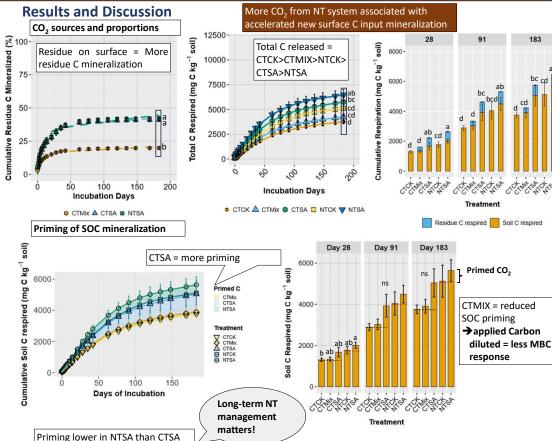


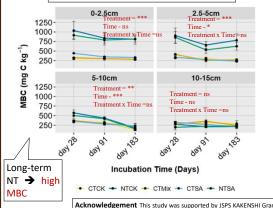
relation to soil disturbance and residue application

- · Microbial biomass carbon
 - Days 28, 91, 183

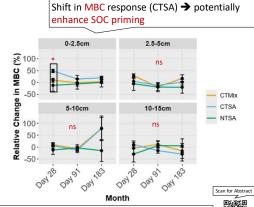
to compare effect of soil structure changes in


NT/CT soi Mesh cover


Physical and Chemical Properties of Long-term NT and CT soil


Tillage				Avail P mg kg ⁻¹	Bulk density g cm ⁻³
NT				21.8 b 9.1 a	
СТ	• •			13.3 ab 15.0 ab	

Data are means (n=4) Different letters indicate significant differences between the treatment-depth combinations based or Tukey's HSD test ($\alpha = 0.05$)


Environmental Conditions

Microbial Biomass Carbon Dynamics

Acknowledgement This study was supported by JSPS KAKENSHI Grant numbers 24K23918 and 24K01889. The first author gratefully acknowledges the financial support provided by the Japanese Government (MEXT) Scholarship.